Skip to main content
Log in

Development of electroactive nanocomposites based on poly(vinylidene fluoride-hexafluoropropylene)/polycarbonate blends with improved dielectric, thermal, and mechanical properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)), as one of the best known piezoelectric polymers, offers unique properties which makes it material of choice for many cutting-edge technologies such as sensors, actuators, and generators. However, the dielectric constant of the polymer in the pure form does not meet the requirements of most practical applications. In this regard, a combination of barium titanate (BT) and carbon nanotube (CNT) nanoparticles are used to boost the dielectric properties of P(VDF-HFP), while blending P(VDF-HFP) with polycarbonate (PC) allows for selective localization and higher dispersion quality of the nanofillers. The incorporation of the nanofillers improves the dielectric properties with a synergistic effect in the quaternary P(VDF-HFP)/PC/BT/CNT 90/10/1.5/1.5 blend nanocomposite while the dielectric loss remains at a remarkably low value. As expected, barium titanate and carbon nanotubes also boost the piezoresponse behavior of the nanocomposites with a repeatable signal as they are exposed to cyclic pressure load. Besides the dielectric and piezoelectric properties, the thermomechanical properties are also promising which are attributed to the high dispersion quality of the nanoparticles and the interaction of polymer chains and the nanofillers at the interface. These novel electroactive nanocomposites have the potential to be used as piezoelectric pressure sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen C, Bai Z, Cao Y et al (2020) Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Compos Sci Technol 192:108100. https://doi.org/10.1016/j.compscitech.2020.108100

    Article  CAS  Google Scholar 

  2. Hu P, Madsen J, Huang Q, Skov AL (2020) Elastomers without covalent cross-linking: Concatenated rings giving rise to elasticity. ACS Macro Lett 9:1458–1463. https://doi.org/10.1021/acsmacrolett.0c00635

    Article  CAS  PubMed  Google Scholar 

  3. Hajiesmaili E, Clarke DR (2021) Dielectric elastomer actuators. J Appl Phys 129:151102. https://doi.org/10.1063/5.0043959

    Article  CAS  Google Scholar 

  4. Ma L, Yu X, Yang Y et al (2020) Highly sensitive flexible capacitive pressure sensor with a broad linear response range and finite element analysis of micro-array electrode. J Mater 6:321–329. https://doi.org/10.1016/j.jmat.2019.12.008

    Article  Google Scholar 

  5. Liu X, Yu L, Zhu Z et al (2021) Silicone-Ionic Liquid Elastomer Composite with Keratin as Reinforcing Agent Utilized as Pressure Sensor. Macromol Rapid Commun 42:2000602. https://doi.org/10.1002/marc.202000602

    Article  CAS  Google Scholar 

  6. Sabry RS, Hussein AD (2019) PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator. Polym Test 79:106001. https://doi.org/10.1016/j.polymertesting.2019.106001

    Article  CAS  Google Scholar 

  7. Huang J, Shian S, Suo Z, Clarke DR (2013) Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Adv Funct Mater 23:5056–5061. https://doi.org/10.1002/adfm.201300402

    Article  CAS  Google Scholar 

  8. Karan SK, Bera R, Paria S et al (2016) An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self-Poled PVDF/AlO-rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency. Adv Energy Mater 6:1–12. https://doi.org/10.1002/aenm.201601016

    Article  CAS  Google Scholar 

  9. Kweon OY, Lee SJ, Oh JH (2018) Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater 10:540–551. https://doi.org/10.1038/s41427-018-0041-6

    Article  CAS  Google Scholar 

  10. Vyas MK, Chandra A (2019) Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of X-band. J Mater Sci 54:1304–1325. https://doi.org/10.1007/s10853-018-2894-z

    Article  CAS  Google Scholar 

  11. Roy S, Thakur P, Hoque NA et al (2016) Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite. RSC Adv 6:21881–21894. https://doi.org/10.1039/c6ra00864j

    Article  CAS  Google Scholar 

  12. Chen J, Wang Y, Yuan Q et al (2018) Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency. Nano Energy 54:288–296. https://doi.org/10.1016/j.nanoen.2018.10.028

    Article  CAS  Google Scholar 

  13. Chu B, Zhou X, Neese B et al (2006) Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene- chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Trans Dielectr Electr Insul 13:1162–1168. https://doi.org/10.1109/TDEI.2006.247845

    Article  CAS  Google Scholar 

  14. Abbasipour M, Khajavi R, Yousefi AA et al (2019) Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polym Adv Technol 30:279–291. https://doi.org/10.1002/pat.4463

    Article  CAS  Google Scholar 

  15. Silakaew K, Thongbai P (2019) Significantly improved dielectric properties of multiwall carbon nanotube-BaTiO3/PVDF polymer composites by tuning the particle size of the ceramic filler. RSC Adv 9:23498–23507. https://doi.org/10.1039/c9ra04933a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ponnamma D, Erturk A, Parangusan H et al (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1:55–65. https://doi.org/10.1007/s42247-018-0007-z

    Article  CAS  Google Scholar 

  17. Yaqoob U, Uddin ASMI, Chung GS (2017) A novel tri-layer flexible piezoelectric nanogenerator based on surface- modified graphene and PVDF-BaTiO3 nanocomposites. Appl Surf Sci 405:420–426. https://doi.org/10.1016/j.apsusc.2017.01.314

    Article  CAS  Google Scholar 

  18. Zhou L, Fu Q, Xue F et al (2017) Multiple Interfacial Fe3O4 @BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density. ACS Appl Mater Interfaces 9:40792–40800. https://doi.org/10.1021/acsami.7b10923

    Article  CAS  PubMed  Google Scholar 

  19. Kasbi SF, Jafari SH, Khonakdar HA et al (2020) β-Polymorph enhancement in poly(vinylidene fluoride) by blending with polyamide 6 and barium titanate nanoparticles. J Appl Polym Sci 137:49403. https://doi.org/10.1002/app.49403

    Article  CAS  Google Scholar 

  20. Elnabawy E, Hassanain AH, Shehata N et al (2019) Piezoelastic PVDF/TPU nanofibrous composite membrane: Fabrication and characterization. Polymers 11:1634. https://doi.org/10.3390/polym11101634

    Article  CAS  PubMed Central  Google Scholar 

  21. Li Z, Arbatti MD, Cheng Z-Y (2004) Novel electroactive polymer system: PVDF-based polymer blends. Electroactive Polymer Actuators and Devices (EAPAD) 5385:99–107.https://doi.org/10.1117/12.539146

  22. Chu B, Neese B, Lin M et al (2008) Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends. Appl Phys Lett 93:152903. https://doi.org/10.1063/1.3002277

    Article  CAS  Google Scholar 

  23. Zhou Z, MacKey M, Carr J et al (2012) Multilayered polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) for high energy density capacitors with enhanced lifetime. J Polym Sci B Polym Phys 50:993–1003. https://doi.org/10.1002/polb.23094

    Article  CAS  Google Scholar 

  24. Liu ZD, Feng Y, Li WL (2013) High Dielectric Constant and Low Loss of Polymeric Dielectric Composites Filled by Carbon Nanotubes Adhering BaTiO3 Hybrid Particles. RSC Adv 1:258–303. https://doi.org/10.1039/C5RA00639B

    Article  CAS  Google Scholar 

  25. Moharana S, Mahaling RN (2017) Silver (Ag)-Graphene oxide (GO)- Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss. Chem Phys Lett 680:31–36. https://doi.org/10.1016/j.cplett.2017.05.018

    Article  CAS  Google Scholar 

  26. Zhao M, Fu Q, Hou Y et al (2019) BaTiO3/MWNTs/polyvinylidene fluoride ternary dielectric composites with excellent dielectric property, high breakdown strength, and high-energy storage density. ACS Omega 4:1000–1006. https://doi.org/10.1021/acsomega.8b02504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou W, Dong L, Sui X et al (2016) High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ZnO particles. J Polym Res 23:1–9. https://doi.org/10.1007/s10965-016-0941-5

    Article  CAS  Google Scholar 

  28. Issa A, Al-Maadeed M, Luyt A et al (2017) Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. J Carbon Res 3:30. https://doi.org/10.3390/c3040030

    Article  CAS  Google Scholar 

  29. Thirmal C, Nayek C, Murugavel P, Subramanian V (2013) Magnetic, dielectric and magnetodielectric properties of PVDF-La0.7Sr0.3MnO3 polymer nanocomposite film. AIP Adv 3:112109. https://doi.org/10.1063/1.4830282

    Article  CAS  Google Scholar 

  30. Goswami K, Daugaard AE, Skov AL (2015) Dielectric properties of ultraviolet cured poly(dimethyl siloxane) sub-percolative composites containing percolative amounts of multi-walled carbon nanotubes. RSC Adv 5:12792–12799. https://doi.org/10.1039/c4ra14637a

    Article  CAS  Google Scholar 

  31. Jin Y, Xia N, Gerhardt RA (2016) Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 30:407–416. https://doi.org/10.1016/j.nanoen.2016.10.033

    Article  CAS  Google Scholar 

  32. Torabi A, Jafari SH, Khonakdar HA et al (2022) Electroactive phase enhancement in poly(vinylidene fluoride-hexafluoropropylene)/polycarbonate blends by hybrid nanofillers. J Appl Polym Sci 139:1–13. https://doi.org/10.1002/app.51825

    Article  CAS  Google Scholar 

  33. Feng Y, Li WL, Hou YF et al (2015) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260. https://doi.org/10.1039/c4tc02183e

    Article  CAS  Google Scholar 

  34. Xie L, Huang X, Li BW et al (2013) Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys 15:17560–17569. https://doi.org/10.1039/c3cp52799a

    Article  CAS  PubMed  Google Scholar 

  35. Xie L, Huang X, Huang Y et al (2013) Core-shell structured hyperbranched aromatic polyamide/ BaTiO3 hybrid filler for poly ( vinylidene fluoride-trifluoroethylene- chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl Mater Interfaces 5:1747–1756. https://doi.org/10.1021/am302959n

    Article  CAS  PubMed  Google Scholar 

  36. Zhou W, Dong L, Sui X et al (2016) High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ ZnO particles. J Polym Res 23:45. https://doi.org/10.1007/s10965-016-0941-5

    Article  CAS  Google Scholar 

  37. Ponnamma D, Al-Maadeed MAA (2019) Influence of BaTiO3 /white graphene filler synergy on the energy harvesting performance of a piezoelectric polymer nanocomposite. Sustain Energy Fuels 3:774–785. https://doi.org/10.1039/c8se00519b

    Article  CAS  Google Scholar 

  38. Issa A, Al-Maadeed M, Luyt A et al (2017) Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C 3:30. https://doi.org/10.3390/c3040030

    Article  CAS  Google Scholar 

  39. Yang K, Huang X, Fang L et al (2014) Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale 6:14740–14753. https://doi.org/10.1039/c4nr03957b

    Article  CAS  PubMed  Google Scholar 

  40. Charde SJ, Sonawane SS, Sonawane SH, Navin S (2018) Influence of functionalized calcium carbonate nanofillers on the properties of melt-extruded polycarbonate composites. Chem Eng Commun 205:492–505. https://doi.org/10.1080/00986445.2017.1404459

    Article  CAS  Google Scholar 

  41. Bouharras FE, Raihane M, Silly G et al (2019) Core-shell structured poly(vinylidene fluoride)- Grafted -BaTiO3 nanocomposites prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of VDF for high energy storage capacitors. Polym Chem 10:891–904. https://doi.org/10.1039/c8py01706a

    Article  CAS  Google Scholar 

  42. Kang DJ, Pal K, Bang DS, Kim JK (2011) Synergistic effect on crystalline structure of polyvinylidene fluoride nanocomposites with multiwalled carbon nanotube loading by a twin screw extruder. J Appl Polym Sci 121:226–233. https://doi.org/10.1002/app.33524

    Article  CAS  Google Scholar 

  43. Martins P, Costa CM, Benelmekki M et al (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14:2807–2811. https://doi.org/10.1039/c2ce06654h

    Article  CAS  Google Scholar 

  44. Linares A, Acosta JL (1997) Tensile and dynamic mechanical behaviour of polymer blends based on PVDF. Eur Polym J 33:467–473. https://doi.org/10.1016/S0014-3057(96)00182-6

    Article  CAS  Google Scholar 

  45. Bhat KN, Nayak MM (2012) MEMS pressure sensors- an overview of challenges in technology and packaging. Inst Smart Struct Syst J Isss 1:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyyed Hassan Jafari or Vahabodin Goodarzi.

Ethics declarations

Conflict of interest

All authors declare that they have no financial/commercial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, A., Jafari, S.H., Khonakdar, H.A. et al. Development of electroactive nanocomposites based on poly(vinylidene fluoride-hexafluoropropylene)/polycarbonate blends with improved dielectric, thermal, and mechanical properties. J Polym Res 29, 425 (2022). https://doi.org/10.1007/s10965-022-03257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03257-2

Keywords

Navigation