Skip to main content
Log in

Extremely adherent and protective polymeric coating based on polydiphenylamine electrodeposited on steel in an organic electrolytic medium

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present work fits into the efforts deployed to minimize the huge problems related to corrosion phenomena. As several industries are affected by the deterioration of metallic materials, new solutions need to be offered by the scientific community. In this context, we describe, in this paper, the electrochemical synthesis of polydiphenylamine coating (PDPA) on steel in an organic solution consisting of CH2Cl2 as solvent and N(Bu)4PF6 as supporting electrolyte. The electrolytic medium has been retained after a preliminary electrogravimetric study has shown that it can inhibit the working electrode dissolution without preventing the PDPA film formation. Spectroscopic and microscopic analyses were then achieved for the elaborated coatings. Analyses by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) have allowed a detailed characterization of the polymer (molecular structure, doping rate, chain length, …). In addition, morphological characterization by scanning electron microscope (SEM) confirmed that the value of the applied current density has a direct influence on the properties of the obtained polymer. The homogeneity and high adherence of the prepared PDPA film allow its use as a protective coating against steel dissolution. For this, corrosion tests were performed by studying the open-circuit potential (OCP), linear polarization curve (Tafel) as well as electrochemical impedance spectroscopy (EIS). The studies achieved in 3% NaCl solution have confirmed that the potential of the steel electrode shifts towards its passivation domain with the presence of PDPA coating. The latter is stable over time in contact with an aggressive solution and the inhibitory efficiency reached 97.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aouzal Z et al (2020) Improvement of the anticorrosion resistance of nickel by polypyrrole coating electrosynthesized in salicylate medium. Mater Today Proc 31:S89–S95. https://doi.org/10.1016/j.matpr.2020.06.237

    Article  CAS  Google Scholar 

  2. Jadi SB et al (2020) Electropolymerization and corrosion resistance of polypyrrole on nickel bipolar plate for PEM fuel cell application. Mater Today Proc 22:52–56. https://doi.org/10.1016/j.matpr.2019.08.072

    Article  CAS  Google Scholar 

  3. El Jaouhari A et al (2017) Corrosion resistance and antibacterial activity of electrosynthesized polypyrrole. Synth Met 226:15–24. https://doi.org/10.1016/j.synthmet.2017.01.008

    Article  CAS  Google Scholar 

  4. El Jaouhari A et al (2018) Comparison study between corrosion protection of polypyrrole synthesized on stainless steel from phthalate and saccharinate aqueous medium. Polym Test 67:302–308. https://doi.org/10.1016/j.polymertesting.2018.03.022

    Article  CAS  Google Scholar 

  5. González MB, Saidman SB (2015) Electrodeposition of bilayered polypyrrole on 316 L stainless steel for corrosion prevention. Prog Org Coatings 78:21–27. https://doi.org/10.1016/J.PORGCOAT.2014.10.012

    Article  Google Scholar 

  6. Nautiyal A, Qiao M, Cook JE, Zhang X, Huang TS (2018) High performance polypyrrole coating for corrosion protection and biocidal applications. Appl Surf Sci 427:922–930. https://doi.org/10.1016/J.APSUSC.2017.08.093

    Article  CAS  Google Scholar 

  7. Yin Y, Prabhakar M, Ebbinghaus P, Corrêa da Silva C, Rohwerder M (2022) Neutral inhibitor molecules entrapped into polypyrrole network for corrosion protection. Chem Eng J 440:135739. https://doi.org/10.1016/J.CEJ.2022.135739

    Article  CAS  Google Scholar 

  8. Mehandzhiyski Y, Zhao X, Liu X, Fan B, Zheng X (2022) Optimized Anticorrosion of Polypyrrole Coating by Inverted-Electrode Strategy: Experimental and Molecular Dynamics Investigations. mdpi.com. https://doi.org/10.3390/polym14071356

    Book  Google Scholar 

  9. Feliú S, Emelyanenko A, Zhu H, Liu X, Hao H, Zheng X (2022) Influence of Surface Pretreatments on the Anticorrosion of Polypyrrole Electro-Polymerized Coatings for Copper in Artificial Seawater. mdpi.com. https://doi.org/10.3390/met12030383

    Book  Google Scholar 

  10. Sang Y et al (2022) Synthetic polyaniline-boron nitride-aqueous epoxy resin composite coating for improving the corrosion resistance of hot-dip galvanized steel plates. Appl Surf Sci 592:153229. https://doi.org/10.1016/J.APSUSC.2022.153229

    Article  CAS  Google Scholar 

  11. Pan W, Dong J, Gui T, Liu R, Liu X, Luo J (2022) Fabrication of dual anti-corrosive polyaniline microcapsules via Pickering emulsion for active corrosion protection of steel. Soft Matter 18(14):2829–2841. https://doi.org/10.1039/D2SM00062H

    Article  CAS  PubMed  Google Scholar 

  12. Wu K, Gui T, Dong J, Luo J, Liu R (2022) Synthesis of robust polyaniline microcapsules via UV-initiated emulsion polymerization for self-healing and anti-corrosion coating. Prog Org Coatings 162:106592. https://doi.org/10.1016/J.PORGCOAT.2021.106592

    Article  CAS  Google Scholar 

  13. Fuseini M, Mahmoud M, Zaghloul Y, Elkady MF, El-Shazly AH (2022) Evaluation of synthesized polyaniline nanofibres as corrosion protection film coating on copper substrate by electrophoretic deposition. J Mater Sci 57(10):6085–6101. https://doi.org/10.1007/S10853-022-06994-3

    Article  CAS  Google Scholar 

  14. Wang Q (2022) Preparation of Polyaniline/Epoxy Composite and Its Anti-Corrosion Performance. Int J Electrochem Sci 17:220416. https://doi.org/10.20964/2022.04.26

    Article  CAS  Google Scholar 

  15. Li X, Liu X, Liu H, Liu X, He R, Meng S (2022) Structure, morphology and anti-corrosion performance of polyaniline modified molybdenum sulfide/epoxy composite coating. Colloids Surf A Physicochem Eng Asp 639:128345. https://doi.org/10.1016/J.COLSURFA.2022.128345

    Article  CAS  Google Scholar 

  16. Bouabdallaoui M et al (2020) Influence of polythiophene overoxidation on its physicochemical properties and corrosion protection performances. Mater Today Proc 31:S69–S74. https://doi.org/10.1016/j.matpr.2020.06.067

    Article  CAS  Google Scholar 

  17. Conde-Nicho J, Nicho ME, Rodríguez JA, León-Silva U, Rodríguez-Lelis JM (2022) Corrosion protection by poly(3-hexylthiophene)/poly(methyl-methacrylate) coating of cracked 410 stainless steel. Anti-Corrosion Methods Mater. https://doi.org/10.1108/ACMM-07-2021-2507 (ahead-of-print)

    Article  Google Scholar 

  18. Xavier JR (2021) Corrosion protection performance and interfacial interactions of polythiophene/silanes/MnO2 nanocomposite coatings on magnesium alloy in marine environment. Int J Polym Anal Charact 26(4):309–329. https://doi.org/10.1080/1023666X.2021.1887627

    Article  CAS  Google Scholar 

  19. Yadav PK, Prakash O, Ray B, Maiti P (2021) Functionalized polythiophene for corrosion inhibition and photovoltaic application. J Appl Polym Sci 138(44):51306. https://doi.org/10.1002/APP.51306

    Article  CAS  Google Scholar 

  20. Zhao Y, Chen M, Liu X, Xu T, Liu W (2005) Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template. Mater Chem Phys 91:518–523. https://doi.org/10.1016/j.matchemphys.2004.12.019

    Article  CAS  Google Scholar 

  21. Athawale AA, Deore BA, Chabukswar VV (1999) Studies on poly(diphenylamine) synthesized electrochemically in nonaqueous media. Mater Chem Phys 58:94–100. https://doi.org/10.1016/S0254-0584(98)00258-2

    Article  CAS  Google Scholar 

  22. Bitew Z, Kassa A, Misgan B (2022) Poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode for voltammetric determination of gallic acid in honey and peanut samples. Arab J Chem 15:103853. https://doi.org/10.1016/J.ARABJC.2022.103853

    Article  CAS  Google Scholar 

  23. Obrezkov FA, Shestakov AF, Vasil’ev SG, Stevenson KJ, Troshin PA (2021) Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J Mater Chem A 9(5):2864–2871. https://doi.org/10.1039/D0TA09427G

    Article  CAS  Google Scholar 

  24. Ozkan SZ et al (2021) One-step synthesis, characterization and properties of novel hybrid electromagnetic nanomaterials based on polydiphenylamine and Co–Fe particles in the absence and presence of single-walled carbon nanotubes. RSC Adv 11(40):24772–24786. https://doi.org/10.1039/D1RA03114G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khatoon H, Ahmad S (2019) Vanadium Pentoxide-Enwrapped Polydiphenylamine/Polyurethane Nanocomposite: High-Performance Anticorrosive Coating. ACS Appl Mater Interfaces 11(2):2374–2385. https://doi.org/10.1021/ACSAMI.8B17861/SUPPL_FILE/AM8B17861_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  26. Lingam R (2019) Synthesis and Electrochemical Characterisation of Novel Hybrid Copper/Poly (diphenylamine) (PDPA) Nanocomposites. Int J Recent Technol Eng 8:2277–3878. https://doi.org/10.35940/ijrte.D1156.1284S219

    Article  Google Scholar 

  27. Hu J-Q, Yang SZ, Zhang JJ, Guo L, Xu X (2019) Synthesis and Anti-Oxidative Properties of Poly(diphenylamine) Derivative as Lubricant Antioxidant. Pet Chem 59(9):1037–1042. https://doi.org/10.1134/S0965544119090081

    Article  Google Scholar 

  28. Muthusankar E, Lee SC, Ragupathy D (2019) Enhanced Electron Transfer Characteristics of Surfactant Wrapped SnO 2 Nanorods Impregnated Poly(diphenylamine) Matrix. Sens Lett 16(12):911–917. https://doi.org/10.1166/SL.2018.4031

    Article  Google Scholar 

  29. Bazzaoui M, Bazzaoui EA, Martins JI, Martins L (2004) Electrochemical Synthesis of Polythiophene Coatings on Zinc and a Zinc Alloy in Organic Media. Mater Sci Forum 455–456:484–488. https://doi.org/10.4028/www.scientific.net/MSF.455-456.484

    Article  Google Scholar 

  30. Petitjean J, Aeiyach S, Ferreira CA, Lacaze PC, Takenouti H (1995) A new oscillatory electrocheical phenomenon observed in the electropolymerization of pyrrole in MeCN+N(Bu)4PF6 on an Iron electrode studied by the ring-disk-electrode technique. J Electrochem Soc 142(1):136–142

    Article  CAS  Google Scholar 

  31. Ferreira CA, Aeiyach S, Delamar M, Lacaze PC (1990) Electropolymerization of pyrrole on iron electrodes Influence of solvent and electrolyte on the nature of the deposits. J Electroanal Chem 284:351–369. https://doi.org/10.1016/j.jelechem.2005.02.001

    Article  CAS  Google Scholar 

  32. Tourillon G, Garnier F (1984) Morphology of conducting organic polymers: Polythiophene and poly(3-methyl thiophene). J Polym Sci 22:33–39. https://doi.org/10.1002/pol.1984.180220103

    Article  CAS  Google Scholar 

  33. Tourillon G, Garnier F (1983) Stability of Conducting Polythiophene and Derivatives. J Electrochem Soc 130(10):2042–2044. https://doi.org/10.1149/1.2119517

    Article  CAS  Google Scholar 

  34. Aeiyach S, Bazzaoui EA, Lacaze PC (1997) Electropolymerization of thiophene on oxidizable metals in organic media. J Electroanal Chem 434:153–162. https://doi.org/10.1016/S0022-0728(97)00044-2

    Article  CAS  Google Scholar 

  35. Odziemkowski M, Krell M, Irish DE (1992) A Raman Microprobe In Situ and Ex Situ Study of Film Formation at Lithium/Organic Electrolyte Interfaces. J Electrochem Soc 139(11):3052–3063. https://doi.org/10.1149/1.2069032

    Article  CAS  Google Scholar 

  36. Chan HSO, Ng SC, Sim WS, Tan KL, Tan BTG (1992) Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-Doping by X-ray Photoelectron Spectroscopy. Macromolecules 25:6029–6034. https://doi.org/10.1021/ma00048a026

    Article  CAS  Google Scholar 

  37. Golczak S, Kanciurzewska A, Fahlman M, Langer K, Langer JJ (2008) Comparative XPS surface study of polyaniline thin films. Solid State Ionics 179:2234–2239. https://doi.org/10.1016/j.ssi.2008.08.004

    Article  CAS  Google Scholar 

  38. Chang C-F, Chen W-C, Wen T-C, Gopalan A (2002) Electrochemical and Spectroelectrochemical Studies on Copolymerization of Diphenylamine with 2,5-Diaminobenzenesulfonic Acid. J Electrochem Soc 149(8):E298–E305. https://doi.org/10.1149/1.1491984

    Article  CAS  Google Scholar 

  39. Kilmartin PA, Wright GA (1997) Photoelectrochemical and spectroscopic studies of sulfonated polyanilines Part I. Copolymers of orthanilic acid and aniline. Synth Met 88:153–162. https://doi.org/10.1016/S0379-6779(97)03854-X

    Article  CAS  Google Scholar 

  40. Wu M-S, Wen T-C, Gopalan A (2001) Electrochemical Copolymerization of Diphenylamine and Anthranilic Acid with Various Feed Ratios. J Electrochem Soc 148(5):D65–D73. https://doi.org/10.1149/1.1366625

    Article  CAS  Google Scholar 

  41. Bouabdallaoui M et al (2017) X-ray photoelectron and in situ and ex situ resonance Raman spectroscopic investigations of polythiophene overoxidation. J Solid State Electrochem 21(12):3519–3532. https://doi.org/10.1007/s10008-017-3698-9

    Article  CAS  Google Scholar 

  42. Eshkenazi V, Peled E, Burstein L, Golodnitsky D (2004) XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion 170:83–91. https://doi.org/10.1016/S0167-2738(03)00107-3

    Article  CAS  Google Scholar 

  43. Ugalde L, Bernede JC, Del Valle MA, Díaz FR, Leray P (2002) SEM study of the growth of electrochemically obtained polythiophene thin films: Effect of electrolyte and monomer concentration in acetonitrile. J Appl Polym Sci 84:1799–1809. https://doi.org/10.1002/app.10291

    Article  CAS  Google Scholar 

  44. Abraham KM, Goldman JL, Natwig DL (1982) Characterization of Ether Electrolytes for Rechargeable Lithium Cells. J Electrochem Soc 129(11):2404–2409. https://doi.org/10.1149/1.2123556

    Article  CAS  Google Scholar 

  45. Shifler DA, Moran PJ, Kruger J (1991) The passivity of iron and carbon steel in anhydrous propylene carbonate solutions. Corros Sci 32(5/6):475–496. https://doi.org/10.1016/0010-938X(91)90102-U

    Article  CAS  Google Scholar 

  46. Nelson AJ, Glenis S, Frank AJ (1987) XPS and UPS investigation of PF6 doped and undoped poly 3methyl thiophene. J Chern Phys 87(8):5002–5006. https://doi.org/10.1063/1.452815

    Article  CAS  Google Scholar 

  47. Cai M, Liang Y, Zhou F, Liu W (2011) Tribological Properties of Novel Imidazolium Ionic Liquids Bearing Benzotriazole Group as the Antiwear/Anticorrosion Additive in Poly(ethylene glycol) and Polyurea Grease for Steel/Steel Contacts. ACS Appl Mater Interfaces 3:4580–4592

    Article  CAS  Google Scholar 

  48. Bazzaoui EA, Bazzaoui M, Aubard J, Lomas JS, Félidj N, Lévi G (2001) Surface-enhanced Raman scattering study of polyalkylthiophenes on gold electrodes and in silver colloids. Synth Met 123:299–309. https://doi.org/10.1016/S0379-6779(01)00299-5

    Article  CAS  Google Scholar 

  49. Bazzaoui EA, Lévi G, Aeiyach S, Aubard J, Marsault JP, Lacaze PC (1995) SERS spectra of polythiophene in doped and undoped states. J Phys Chem 99:6628–6634. https://doi.org/10.1021/j100017a052

    Article  CAS  Google Scholar 

  50. Bazzaoui EA, Marsault JP, Aeiyach S, Lacaze PC (1994) Resonance Raman study of polythiophene films in the doped and undoped states. Relations between spectral data and physicochemical properties. Synth Met 66:217–224. https://doi.org/10.1016/0379-6779(94)90070-1

    Article  CAS  Google Scholar 

  51. Bazzaoui EA, Aubard J, Félidj N, Laurent G, Lévi G (2005) Ex situ and in situ SERS analyses of polybithiophene using roughened Ag and Cu electrodes and multilayer SERS-active systems. J Raman Spectrosc 36:817–823. https://doi.org/10.1002/jrs.1368

    Article  CAS  Google Scholar 

  52. Bazzaoui EA, Aeiyach S, Lacaze PC (1996) Electropolymerization of bithiophene on Pt and Fe electrodes in an aqueous sodium dodecylsulfate (SDS) micellar medium. Synth Met 83:159–165. https://doi.org/10.1016/S0379-6779(97)80070-7

    Article  CAS  Google Scholar 

  53. Showkat AM, Cao XT, Kim DW, Islam MR, Lim KT (2015) Characterization of poly(diphenylamine)-gold nanocomposites obtained by self-assembly. IOP Conf Ser Mater Sci Eng 77:1–8. https://doi.org/10.1088/1757-899X/77/1/012007

    Article  CAS  Google Scholar 

  54. Kim SB, Harada K, Yamamoto T (1998) Preparation of poly(diphenylamine-4,4′-diyl) and related random copolymers by organometallic polycondensation. Electrical, electrochemical, and optical properties. Macromolecules 31:988–993. https://doi.org/10.1021/ma971244f

    Article  CAS  Google Scholar 

  55. Showkat AM, Cao XT, Kim DW, Kim YH, Lim KT (2016) Self-Assembly Directed One-Step Synthesis of Conducting Poly(diphenylamine)/Gold Nanocomposites. Sci Adv Mater 8:318–321. https://doi.org/10.1166/sam.2016.2486

    Article  CAS  Google Scholar 

  56. Tang J, Jing X, Wang B, Wang F (1988) Infrared spectra of soluble polyaniline. Synth Met 24:231–238. https://doi.org/10.1016/0379-6779(88)90261-5

    Article  CAS  Google Scholar 

  57. Dong S, Song FY, Li Z (1992) Electrochemical Synthesis and Characterization of polydiphenylamine. Chin J Chem 10(1):10–16. https://doi.org/10.1088/1742-6596/431/1/012003

    Article  CAS  Google Scholar 

  58. Md Showkat A, Md Showkat KP, Gopalan AI, Kim SH, Choi SH, Sohn SH (2006) Characterization and preparation of new multiwall carbon nanotube/conducting polymer composites by in situ polymerization. J Appl Polym Sci 101:3721–3729. https://doi.org/10.1002/app.23359

    Article  CAS  Google Scholar 

  59. Ozkan SZ, Dzidziguri EL, Karpacheva GP, Bondarenko GN (2011) Synthesis, structure, and properties of new Cu/polydiphenylamine metallopolymer nanocomposites. Nanotechnologies Russ 6(11–12):750–756. https://doi.org/10.1134/S1995078011060115

    Article  CAS  Google Scholar 

  60. Ozkan SZ, Dzidziguri EL, Chernavskii PA, Karpacheva GP, Efimov MN, Bondarenko GN (2013) Metal-polymer nanocomposites based on polydiphenylamine and cobalt nanoparticles. Nanotechnologies Russ 8(7–8):452–460. https://doi.org/10.1134/S1995078013040113

    Article  Google Scholar 

  61. Fenelon AM, Breslin CB (2005) The Formation of Polypyrrole at Iron from 1-Butyl-3-methylimidazolium Hexafluorophosphate. J Electrochem Soc 152(1):D6–D11. https://doi.org/10.1149/1.1831211

    Article  CAS  Google Scholar 

  62. Gambino D et al (1999) Synthesis, Characterization, and Crystal Structure of [ReO(Me4tu)4](PF6)3 (tu = thiourea). Z Anorg Allg Chem 625:813–819

    Article  CAS  Google Scholar 

  63. Heinze J, Frontana-uribe BA, Ludwigs S (2010) Electrochemistry of Conducting Polymers s Persistent Models and New. Chem Rev 110:4724–4771

    Article  CAS  Google Scholar 

  64. Kraljić M, Mandić Z, Duić L (2003) Inhibition of steel corrosion by polyaniline coatings. Corros Sci 45(1):181–198. https://doi.org/10.1016/S0010-938X(02)00083-5

    Article  Google Scholar 

  65. Minh L, Quoc V (2013) Layers of Inhibitor Anion – Doped Polypyrrole for Corrosion Protection of Mild Steel. Materials Science - Advanced Topics. InTech

    Google Scholar 

  66. Roberge PR, Pierre R (1999) Handbook of Corrosion Engineering. McGraw-Hill

    Google Scholar 

  67. Sathiyanarayanan S, Muthukrishnan S, Venkatachari G (2006) Synthesis and anticorrosion properties of polydiphenylamine blended vinyl coatings. Synth Met 156:1208–1212. https://doi.org/10.1016/j.synthmet.2006.08.008

    Article  CAS  Google Scholar 

  68. Beck F, Barsch U, Michaelis R (1993) Corrosion of conducting polymers in aqueous media. J Electroanal Chem 351(1–2):169–184. https://doi.org/10.1016/0022-0728(93)80232-7

    Article  CAS  Google Scholar 

  69. Christensen PA, Hamnett A (1991) In situ spectroscopic investigations of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solution. Electrochim Acta 36(8):1263–1286. https://doi.org/10.1016/0013-4686(91)80005-S

    Article  CAS  Google Scholar 

  70. Hien NTL, Garcia B, Pailleret A, Deslouis C (2005) Role of doping ions in the corrosion protection of iron by polypyrrole films. Electrochim Acta 50(7–8):1747–1755. https://doi.org/10.1016/j.electacta.2004.10.072

    Article  CAS  Google Scholar 

  71. Inzelt G (2018) Conducting polymers: past, present, future. J Electrochem Sci Eng 8(1):3–37. https://doi.org/10.5599/jese.448

    Article  CAS  Google Scholar 

  72. Deshpande PP, Jadhav NG, Gelling VJ, Sazou D (2014) Conducting polymers for corrosion protection : a review. J Coat Technol Res. https://doi.org/10.1007/s11998-014-9586-7

    Article  Google Scholar 

  73. Paliwoda-Porebska G, Rohwerder M, Stratmann M, Rammelt U, Duc LM, Plieth W (2006) Release mechanism of electrodeposited polypyrrole doped with corrosion inhibitor anions. J Solid State Electrochem 10(9):730–736. https://doi.org/10.1007/s10008-006-0118-y

    Article  CAS  Google Scholar 

  74. Plieth W, Bund A, Rammelt U, Neudeck S, Duc LM (2006) The role of ion and solvent transport during the redox process of conducting polymers. Electrochim Acta 51(11):2366–2372. https://doi.org/10.1016/j.electacta.2005.03.087

    Article  CAS  Google Scholar 

  75. Rammelt U, Duc LM, Plieth W (2005) Improvement of protection performance of polypyrrole by dopant anions. J Appl Electrochem 35(12):1225–1230. https://doi.org/10.1007/s10800-005-9033-7

    Article  CAS  Google Scholar 

  76. Shinde VP (2017) Study of water transport characteristics of poly ( o -ethylaniline ) coatings : corrosion mechanism. Ionics. https://doi.org/10.1007/s11581-017-2213-8

    Article  Google Scholar 

  77. Sangaj NS, Malshe VC (2004) Permeability of polymers in protective organic coatings. Prog Org Coatings 50(1):28–39. https://doi.org/10.1016/j.porgcoat.2003.09.015

    Article  CAS  Google Scholar 

  78. Herrasti P, del Rio AI, Recio J (2007) Electrodeposition of homogeneous and adherent polypyrrole on copper for corrosion protection. Electrochim Acta 52:6496–6501. https://doi.org/10.1016/j.electacta.2007.04.074

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the MESRSFC and CNRST (Morocco) under grant No. PPR/30/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimouna Bouabdallaoui.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouabdallaoui, M., El Guerraf, A., Aouzal, Z. et al. Extremely adherent and protective polymeric coating based on polydiphenylamine electrodeposited on steel in an organic electrolytic medium. J Polym Res 29, 357 (2022). https://doi.org/10.1007/s10965-022-03215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03215-y

Keywords

Navigation