Skip to main content
Log in

Polymer functional group impact on the thermo-mechanical properties of polyacrylic acid, polyacrylic amide- poly (vinyl alcohol) nanocomposites reinforced by graphene oxide nanosheets

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Graphene properties bring significant attention to enhancing the performance of attractive nanocomposites. This investigation focused on the impact of polymer functional groups. Two polymers with the same backbone chain and different end functional groups, poly (acrylic acid) (PAA) and poly (acrylic amide) (PAAm) reinforced with the graphene oxide (GO) nanosheets. The developed mixing-sonication-acoustic method was successfully fabricated PAA: poly (vinyl alcohol) (PVA): GO and PAAm: PVA: GO nanocomposites films. Fourier transforms infrared (FTIR) revealed the strongly interfacial interaction between polymers and GO nanosheet, supported by shifting in the polymer's X-ray diffraction (XRD) peaks and an increase in the crystallite size of the polymer. Scanning electron microscopy (SEM) exhibited fine homogeneous and good nanomaterials dispersion in the polymers matrix. The sample showed better thermal stability, conductivity, and mechanical properties. The contribution of GO showed a remarkable change in the structure, morphology, differential scanning calorimetry (DSC), and slight enhancement of thermogravimetric analysis (TGA) results up to 25% and 20%, in contrast, thermal conductivity (TC) displayed notable enhancement up to 50% from 10.76 to 16.24 W/m oC, and 225% from 3.54 to 11.24 W/m oC, of PAA-PVA/GO and PAAm-PVA/GO nanocomposites, respectively. The mechanical properties such as ultrasound velocity, compressibility, and modulus of elasticity revealed notable enhancement after the contribution of GO up to 85%, 75% and 76%, 81%, and 233%, 148% of PAA-PVA/GO and PAAm-PVA/GO nanocomposites, respectively, compared to their blended polymers. Adsorbed radiation significantly enhanced 24% by acid group nanocomposites and showed promising sensors, thermostats, and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

We confirm that all data and materials are authentic and available.

References

  1. Díez-Pascual AM, Gómez-Fatou MA, Ania F, Flores A (2015) Nanoindentation in polymer nanocomposites. Prog Mater Sci 67:1–94. https://doi.org/10.1016/j.pmatsci.2014.06.002

    Article  CAS  Google Scholar 

  2. Al-Bermany E, Chen B (2021) Preparation and characterisation of poly(ethylene glycol)-adsorbed graphene oxide nanosheets. Polym Int 70:341–351. https://doi.org/10.1002/pi.6140

    Article  CAS  Google Scholar 

  3. Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54:5087–5103. https://doi.org/10.1016/j.polymer.2013.06.027

    Article  CAS  Google Scholar 

  4. Kadhim MA, Al-Bermany E (2021) New fabricated PMMA-PVA/graphene oxide nanocomposites: Structure, optical properties and application. J Compos Mater 55:2793–2806. https://doi.org/10.1177/0021998321995912

    Article  CAS  Google Scholar 

  5. Bin-Dahman OA, Shehzad F, Al-Harthi MA (2018) Influence of graphene on the non-isothermal crystallization kinetics of poly(vinyl alcohol)/starch composite. J Polym Res 25. https://doi.org/10.1007/s10965-017-1400-7

  6. Sui T, Song B, Zhang F, Yang Q (2016) Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin. Royal Soc Chem 6:393–402. https://doi.org/10.1039/c5ra22932d

  7. Fu K, Lü F, Xie Q et al (2020) The effects of shape and mass fraction of nano-SiO2 on thermomechanical properties of nano-SiO2/DGEBA/MTHPA composites: A molecular dynamics simulation study. AIP Adv 10:1–9. https://doi.org/10.1063/1.5135627

    Article  CAS  Google Scholar 

  8. Parvin N, Babapoor A, Nematollahzadeh A, Mousavi SM (2020) Removal of phenol and β-naphthol from aqueous solution by decorated graphene oxide with magnetic iron for modified polyrhodanine as nanocomposite adsorbents: Kinetic, equilibrium and thermodynamic studies. React Funct Polym 156:104718. https://doi.org/10.1016/j.reactfunctpolym.2020.104718

  9. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321:385–388. https://doi.org/10.1126/science.1159499

  10. Li XS, Zhu YW, Cai WW et al (2009) Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett 9:4359–4363. https://doi.org/10.1021/nl902623y

    Article  CAS  PubMed  Google Scholar 

  11. Abdul kadhim M, Al-bermany E (2020) Enhance the Electrical Properties of the Novel Fabricated PMMA-PVA/ Graphene Based Nanocomposites. J Green Eng 10:3465–3483

    Google Scholar 

  12. Zhang S, Liu P, Zhao X, Xu J (2018) Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J Polym Res 25. https://doi.org/10.1007/s10965-018-1471-0

  13. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  14. Al-Abbas SS, Ghazi RA, Al-shammari AK et al (2021) Influence of the polymer molecular weights on the electrical properties of Poly(vinyl alcohol) – Poly(ethylene glycols)/Graphene oxide nanocomposites. Mater Today: Proc 42:2469–2474. https://doi.org/10.1016/j.matpr.2020.12.565

    Article  CAS  Google Scholar 

  15. Bhattacharya M (2016) Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9:1–35. https://doi.org/10.3390/ma9040262

    Article  CAS  Google Scholar 

  16. Kim H, Abdala AA, MacOsko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. https://doi.org/10.1021/ma100572e

    Article  CAS  Google Scholar 

  17. Raza Y, Raza H, Ahmad A et al (2021) Production and investigation of mechanical properties of graphene/polystyrene nano composites. J Polym Res 28:217. https://doi.org/10.1007/s10965-021-02560-8

    Article  CAS  Google Scholar 

  18. Hou L, Gao J, Ruan H et al (2020) Correction to: Mechanical and thermal properties of hyperbranched poly(ε-caprolactone) modified graphene/epoxy composites. J Polym Res 27:146. https://doi.org/10.1007/s10965-020-02044-1

  19. Lago E, Toth PS, Pugliese G et al (2016) Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties. RSC Adv 6:97931–97940. https://doi.org/10.1039/c6ra21962d

    Article  CAS  Google Scholar 

  20. Noh YJ, Joh HI, Yu J et al (2015) Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci Rep 5:1–7. https://doi.org/10.1038/srep09141

    Article  CAS  Google Scholar 

  21. Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077. https://doi.org/10.1002/macp.201200029

    Article  CAS  Google Scholar 

  22. Lavoratti A, Zattera AJ, Amico SC (2019) Mechanical and dynamic-mechanical properties of silanized graphene oxide/epoxy composites. J Polym Res 26. https://doi.org/10.1007/s10965-019-1805-6

  23. Massoud A, Farid OM, Maree RM et al (2020) An improved metal cation capture on polymer with graphene oxide synthesized by gamma radiation. React Funct Polym 151. https://doi.org/10.1016/j.reactfunctpolym.2020.104564

  24. Jo H, Sim M, Kim S et al (2017) Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomater 48:100–109. https://doi.org/10.1016/j.actbio.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  25. Billmeyer FW (1963) Textbook of Polymer Science. Kobunshi 12:240–251. https://doi.org/10.1295/kobunshi.12.240

    Article  Google Scholar 

  26. Aldulaimi NR, Al-Bermany E (2021) New Fabricated UHMWPEO-PVA Hybrid Nanocomposites Reinforced by GO Nanosheets: Structure and DC Electrical Behaviour. J Phys: Conf Ser 1973:012164. https://doi.org/10.1088/1742-6596/1973/1/012164

    Article  CAS  Google Scholar 

  27. Badawi A, Mersal GAM, Shaltout AA et al (2021) Exploring the structural and optical properties of FeS filled graphene/PVA blend for environmental-friendly applications. J Polym Res 28:1–12. https://doi.org/10.1007/s10965-021-02626-7

    Article  CAS  Google Scholar 

  28. Saeed AA, Balwa BD (2016) Structural and AC Electrical Properties of (LDPE-MWCNTs) Polymer Nanocomposite. Mustansiriyah J Sci Educ 17:49–62

    Google Scholar 

  29. Lu YJ, Yang HW, Hung SC et al (2012) Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. Int J Nanomed 7:1737–1747. https://doi.org/10.2147/IJN.S29376

    Article  CAS  Google Scholar 

  30. Osma B, Evingür GA, Pekcan Ö (2019) Effect of temperature and graphene oxide on the swelling of PAAm-GO composite gels. Proc World Cong New Technol 0:6–10. https://doi.org/10.11159/icnfa19.146

  31. Li T, Li Y, Wang X et al (2019) Thermally and Near-Infrared Light-Induced Shape Memory Polymers Capable of Healing Mechanical Damage and Fatigued Shape Memory Function. ACS Appl Mater Interfaces 11:9470–9477. https://doi.org/10.1021/acsami.8b21970

    Article  CAS  PubMed  Google Scholar 

  32. Yue YM, Xu K, Liu XG et al (2008) Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug delivery. J Appl Polym Sci 108:3836–3842. https://doi.org/10.1002/app.28023

    Article  CAS  Google Scholar 

  33. Shen J, Yan B, Li T et al (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A Appl Sci Manuf 43:1476–1481. https://doi.org/10.1016/j.compositesa.2012.04.006

    Article  CAS  Google Scholar 

  34. Deshmukh K, Ahmad J, Hägg MB (2014) Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic polyvinyl alcohol. Ionics 20:957–967. https://doi.org/10.1007/s11581-013-1062-3

    Article  CAS  Google Scholar 

  35. Abdelamir AI, Al-Bermany E, Sh Hashim F (2019) Enhance the Optical Properties of the Synthesis PEG/Graphene- Based Nanocomposite films using GO nanosheets. J Phys: Conf Ser 1294:022029. https://doi.org/10.1088/1742-6596/1294/2/022029

    Article  CAS  Google Scholar 

  36. Wang X, Li X, Zheng G et al (2006) In situ synthesis of PVA-PAA-HA interpenetrating composite hydrogel. In: Key Eng Mater. pp 1165–1168. https://doi.org/10.4028/www.scientific.net/KEM.309-311.1165

  37. Guo R, Jiao T, Xing R et al (2017) Hierarchical AuNPs-Loaded Fe3O4/Polymers Nanocomposites Constructed by Electrospinning with Enhanced and Magnetically Recyclable Catalytic Capacities. Nanomaterials 7:317. https://doi.org/10.3390/nano7100317

    Article  CAS  PubMed Central  Google Scholar 

  38. Liu T, Jiao C, Peng X et al (2018) Super-strong and tough poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced by hydrogen bonding. J Mater Chem B 6:8105–8114. https://doi.org/10.1039/c8tb02556h

    Article  CAS  PubMed  Google Scholar 

  39. Rajesh K, Crasta V, Rithin Kumar NB et al (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26. https://doi.org/10.1007/s10965-019-1762-0

  40. El-Gamal S, El Sayed AM (2019) Physical properties of the organic polymeric blend (PVA/PAM) modified with MgO nanofillers. J Compos Mater 53:2831–2847. https://doi.org/10.1177/0021998319840802

    Article  CAS  Google Scholar 

  41. Yang CC (2004) Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte. Mater Lett 58:33–38. https://doi.org/10.1016/S0167-577X(03)00409-9

    Article  CAS  Google Scholar 

  42. Yang Z, Zhang Y, Wen B (2019) Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design. Compos Sci Technol 178:41–49. https://doi.org/10.1016/j.compscitech.2019.04.023

    Article  CAS  Google Scholar 

  43. Qiu M, Zhang Y, Wen B (2018) Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance. J Mater Sci: Mater Electron 29:10437–10444. https://doi.org/10.1007/s10854-018-9100-6

    Article  CAS  Google Scholar 

  44. Chen Y, Qi Y, Liu B (2013) Polyacrylic acid functionalized nanographene as a nanocarrier for loading and controlled release of doxorubicin hydrochloride. J Nanomater 2013:1–8. https://doi.org/10.1155/2013/345738

    Article  CAS  Google Scholar 

  45. Zhong Y, Huang LH, Sen ZZ et al (2016) Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: Zwitterionic polymer is superior to other polymers with different charges. Int J Nanomed 11:5989–6002. https://doi.org/10.2147/IJN.S120659

    Article  CAS  Google Scholar 

  46. Lim BC, Singu BS, Hong SE et al (2016) Synthesis and characterization nanocomposite of polyacrylamide-rGO-Ag-PEDOT/PSS hydrogels by photo polymerization method. Polym Adv Technol 27:366–373. https://doi.org/10.1002/pat.3648

    Article  CAS  Google Scholar 

  47. Dweik H, Sultan W, Sowwan M, Makharza S (2008) Analysis characterization and some properties of polyacrylamide copper complexes. Int J Polym Mater Polym Biomater 57:228–244. https://doi.org/10.1080/00914030701413280

    Article  CAS  Google Scholar 

  48. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22:3637. https://doi.org/10.1039/c2jm15062j

    Article  CAS  Google Scholar 

  49. Lees CH, Chorlton JD (1896) LIV. On a simple apparatus for determining the thermal conductivities of cements and other substances used in the arts. The London Edinburgh Dublin Philosophic Magz J Sci 41:495–503. https://doi.org/10.1080/14786449608620875

    Article  Google Scholar 

  50. Majeed NS, Salih SM, Abdulmajeed BA (2019) Effect of nanoparticles on thermal conductivity of epoxy resin system. IOP Conf Ser: Mater Sci Eng 518. https://doi.org/10.1088/1757-899X/518/6/062006

  51. Classic K (2002) Medical Imaging Physics, Fourth Edition. Health Phys 83:921. https://doi.org/10.1097/00004032-200212000-00023

  52. Rashid A-KJ, Jawad ED, Kadem BY (2011) A Study of Some Mechanical Properties of Iraqi Palm Fiber-PVA Composite by Ultrasonic. Eur J Sci Res 61:203–209

    Google Scholar 

  53. Abdelamir AI, Al-Bermany E, Hashim FS (2020) Important factors affecting the microstructure and mechanical properties of PEG/GO-based nanographene composites fabricated applying assembly-acoustic method. In: AIP Conference Proceedings. p 020110. https://doi.org/10.1063/5.0000175

  54. AttaM Madbouly ERZKAM (2015) Study on Polymer Clay Layered Nanocomposites As Shielding Materials for Ionizing Radiation. Int J Recent Sci Res 6:4263–4269

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the MSE at the University of Sheffield, the UK, composites. Nanomaterials group at the department of physics, the University of Babylon, Ira,q for their support.

Funding

We confirmed that no fund had an applicant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehssan Al-Bermany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 501 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-shammari, A.K., Al-Bermany, E. Polymer functional group impact on the thermo-mechanical properties of polyacrylic acid, polyacrylic amide- poly (vinyl alcohol) nanocomposites reinforced by graphene oxide nanosheets. J Polym Res 29, 351 (2022). https://doi.org/10.1007/s10965-022-03210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03210-3

Keywords

Navigation