Skip to main content

Advertisement

Log in

Activated calcium silicate/natural rubber composites prepared via latex compounding: Static and dynamic mechanical properties

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Activated calcium silicate (ACS) is a solid byproduct of alumina extraction from high-alumina fly ash. Because of the excellent properties of ACS, the effective utilization of the material has attracted considerable research interest. In this study, we prepared a series of natural rubber (NR) composites via a latex compounding method using ACS. The effects of ACS content and particle size on the processing properties, network structure, and static and dynamic mechanical properties of the composites were investigated. The ACS particles were found to be chemically absorbed on the rubber macromolecules. Lower ACS particle sizes and higher ACS content promoted vulcanization, caused the formation of shorter rubber chains, and increased the cross-linking density. The tensile strength of the composite reached 22.32 MPa (163% greater than that of pure NR) at an ACS average particle size of 2.92 μm (D90) with a loading of 40 phr (mass parts per hundred parts of rubber), whereas further increasing the ACS content led to agglomeration. Overall satisfactory performance was achieved at an optimal ACS particle size of 2.92 μm (D90) with a loading of 30 phr in the NR matrix. Thus, this approach both enhances the performance of NR and effectively utilizes ACS waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kulshrestha U, Gupta T, Kumawat P et al (2020) Cellulose nanofibre enabled natural rubber composites: Microstructure, curing behaviour and dynamic mechanical properties. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106676

    Article  Google Scholar 

  2. Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117(41):12632–12648. https://doi.org/10.1021/jp4039489

    Article  CAS  PubMed  Google Scholar 

  3. Men X, Wang F, Chen GQ et al (2018) Biosynthesis of natural rubber: current state and perspectives. Int J Mol Sci. https://doi.org/10.3390/ijms20010050

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377. https://doi.org/10.1016/j.polymertesting.2006.12.003

    Article  CAS  Google Scholar 

  5. Fu Y, Yang C, Lvov YM et al (2017) Antioxidant sustained release from carbon nanotubes for preparation of highly aging resistant rubber. Chem Eng J 328:536–545. https://doi.org/10.1016/j.cej.2017.06.142

    Article  CAS  Google Scholar 

  6. Kanoth BP, Claudino M, Johansson M et al (2015) Biocomposites from natural rubber: synergistic effects of functionalized cellulose nanocrystals as both reinforcing and cross-linking agents via free-radical thiol-ene chemistry. ACS Appl Mater Interfaces 7(30):16303–16310. https://doi.org/10.1021/acsami.5b03115

    Article  CAS  Google Scholar 

  7. Senna MM, Mohamed RM, Shehab-Eldin AN et al (2012) Characterization of electron beam irradiated natural rubber/modified starch composites. J Ind Eng Chem 18(5):1654–1661. https://doi.org/10.1016/j.jiec.2012.03.004

    Article  CAS  Google Scholar 

  8. Dileep P, Varghese GA, Sivakumar S et al (2020) An innovative approach to utilize waste silica fume from zirconia industry to prepare high performance natural rubber composites for multi-functional applications. Polym Test. https://doi.org/10.1016/j.polymertesting.2019.106172

    Article  Google Scholar 

  9. Moitra N, Ichii S, Kamei T et al (2014) Surface functionalization of silica by Si-H activation of hydrosilanes. J Am Chem Soc 136(33):11570–11573. https://doi.org/10.1021/ja504115d

    Article  CAS  PubMed  Google Scholar 

  10. Liu YB, Li L, Wang Q (2010) Effect of carbon black/nanoclay hybrid filler on the dynamic properties of natural rubber vulcanizates. J Appl Polym Sci 118(2):1111–1120. https://doi.org/10.1002/app.32486

    Article  CAS  Google Scholar 

  11. Wang Y, Wang FH, Gao S et al (2019) Two-dimensional layered double hydroxides nanoplatelets assembled in situ on SiO2 nanoparticles for high-performing hydrogenated nitrile butadiene rubber. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2019.107742

    Article  Google Scholar 

  12. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 51:127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001

    Article  CAS  Google Scholar 

  13. Kang HL, Tang YY, Yao L et al (2017) Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Compos B 112:1–7. https://doi.org/10.1016/j.compositesb.2016.12.035

    Article  CAS  Google Scholar 

  14. Tzounis L, Debnath S, Rooj S et al (2014) High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Mater Des 58:1–11. https://doi.org/10.1016/j.matdes.2014.01.071

    Article  CAS  Google Scholar 

  15. Utara S, Jantachum P, Sukkaneewat B (2017) Effect of surface modification of silicon carbide nanoparticles on the properties of nanocomposites based on epoxidized natural rubber/natural rubber blends. J Appl Polym Sci. https://doi.org/10.1002/app.45289

    Article  Google Scholar 

  16. Asl SMH, Javadian H, Khavarpour M et al (2019) Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. J Cleaner Prod 208:1131–1147. https://doi.org/10.1016/j.jclepro.2018.10.186

    Article  CAS  Google Scholar 

  17. Ding J, Ma SH, Shen S et al (2017) Research and industrialization progress of recovering alumina from fly ash: A concise review. Waste Manage 60:375–387. https://doi.org/10.1016/j.wasman.2016.06.009

    Article  CAS  Google Scholar 

  18. Yao ZT, Ji XS, Sarker PK et al (2015) A comprehensive review on the applications of coal fly ash. Earth-Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

    Article  Google Scholar 

  19. Wang F, Zhang YF, Mao ZH (2020) High adsorption activated calcium silicate enabling high-capacity adsorption for sulfur dioxide. New J Chem 44(27):11879–11886. https://doi.org/10.1039/d0nj01874k

    Article  CAS  Google Scholar 

  20. Yao ZT, Xia MS, Sarker PK et al (2014) A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 120:74–85. https://doi.org/10.1016/j.fuel.2013.12.003

    Article  CAS  Google Scholar 

  21. Wu YP, Wang YQ, Zhang HF et al (2005) Rubber–pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension. Compos Sci Technol 65(7–8):1195–1202. https://doi.org/10.1016/j.compscitech.2004.11.016

    Article  CAS  Google Scholar 

  22. Wu YP, Ji MQ, Qi Q et al (2004) Preparation, structure, and properties of starch/rubber composites prepared by co-coagulating rubber latex and starch paste. Macromol Rapid Commun 25(4):565–570. https://doi.org/10.1002/marc.200300125

    Article  CAS  Google Scholar 

  23. Wang WJ, Zhang YM, Zhang YF et al (2021) Vulcanization, static mechanical properties, and thermal stability of activated calcium silicate/styrene-butadiene rubber composites prepared via a latex compounding method. J Appl Polym Sci. https://doi.org/10.1002/app.51462

    Article  Google Scholar 

  24. Zhang A, Zhang YM, Zhang YF (2020) Characterization of kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite prepared by latex blending method: Dynamic mechanic properties and mechanism. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106600

    Article  Google Scholar 

  25. Gu Z, Song GJ, Liu WS et al (2009) Preparation and properties of styrene butadiene rubber/natural rubber/organo-bentonite nanocomposites prepared from latex dispersions. Appl Clay Sci 46(3):241–244. https://doi.org/10.1016/j.clay.2009.08.010

    Article  CAS  Google Scholar 

  26. Arroyo M, Lopez-manchado MA, Valentin JL et al (2007) Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos Sci Technol 67(7–8):1330–1339. https://doi.org/10.1016/j.compscitech.2006.09.019

    Article  CAS  Google Scholar 

  27. Zhang XH, Yang HM, Song YH et al (2012) Influence of crosslinking on physical properties of low density polyethylene. Chin J Polym Sci 30(6):837–844. https://doi.org/10.1007/s10118-012-1194-3

    Article  CAS  Google Scholar 

  28. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11(11):512–520. https://doi.org/10.1063/1.1723791

    Article  CAS  Google Scholar 

  29. López-Manchado MA, Herrero B, Arroyo M (2003) Preparation and characterization of organoclay nanocomposites based on natural rubber. Polym Int 52(7):1070–1077. https://doi.org/10.1002/pi.1161

    Article  CAS  Google Scholar 

  30. Yang YJ, Zhang H, Zhang KN et al (2020) Vulcanization, interfacial interaction, and dynamic mechanical properties of in-situ organic amino modified kaolinite/SBR nanocomposites based on latex compounding method. Appl Clay Sci. https://doi.org/10.1016/j.clay.2019.105366

    Article  Google Scholar 

  31. Choi SS, Kim JC (2012) Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes. J Ind Eng Chem 18(3):1166–1170. https://doi.org/10.1016/j.jiec.2012.01.011

    Article  CAS  Google Scholar 

  32. Bhattacharya M, Bhowmick AK (2010) Synergy in carbon black-filled natural rubber nanocomposites. Part I: Mechanical, dynamic mechanical properties, and morphology. J Mater Sci 45(22):6126–6138. https://doi.org/10.1007/s10853-010-4699-6

    Article  CAS  Google Scholar 

  33. Wang XY, Sun JM, Zhang YF et al (2021) Study on the correlation between pore morphology of porous calcium silicate and high-capacity formaldehyde adsorption. Environ Technol 42(13):2021–2030. https://doi.org/10.1080/09593330.2019.1687588

    Article  CAS  PubMed  Google Scholar 

  34. Liew YM, Kamarudin H, Al Bakri AMM et al (2012) Processing and characterization of calcined kaolin cement powder. Constr Build Mater 30:794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079

    Article  Google Scholar 

  35. Tsoncheva T, Issa G, Blasco T et al (2013) Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Appl Catal A 453:1–12. https://doi.org/10.1016/j.apcata.2012.12.007

    Article  CAS  Google Scholar 

  36. Yu P, Kirkpatrick RJ, Poe B et al (1999) Structure of calcium silicate hydrate (C-S-H)-near Mid and Far infrared spectroscopy. J Am Ceram Soc 82(3):742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x

    Article  CAS  Google Scholar 

  37. Wang XY, Sun JM, Zhang YF et al (2019) Thermal behaviors of a porous calcium silicate material prepared from coal-bearing strata kaolinite. J Therm Anal Calorim 137(6):1951–1960. https://doi.org/10.1007/s10973-019-08084-0

    Article  CAS  Google Scholar 

  38. Junkong P, Cornish K, Ikeda Y (2017) Characteristics of mechanical properties of sulphur cross-linked guayule and dandelion natural rubbers. RSC Adv 7(80):50739–50752. https://doi.org/10.1039/c7ra08554k

    Article  CAS  Google Scholar 

  39. Salaeh S, Thitithammawong A, Salae A (2020) Highly enhanced electrical and mechanical properties of methyl methacrylate modified natural rubber filled with multiwalled carbon nanotubes. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106417

    Article  Google Scholar 

  40. Ooi ZX, Ismail H, Abu Bakar A (2014) Study on the ageing characteristics of oil palm ash reinforced natural rubber composites by introducing a liquid epoxidized natural rubber coating technique. Polym Test 37:156–162. https://doi.org/10.1016/j.polymertesting.2014.05.003

    Article  CAS  Google Scholar 

  41. Rajasekar R, Pal K, Heinrich G et al (2009) Development of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as compatibilizer. Mater Des 30(9):3839–3845. https://doi.org/10.1016/j.matdes.2009.03.014

    Article  CAS  Google Scholar 

  42. Ismail H, Chia HH (1998) The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds. Eur Polym J 34(12):1857–1863. https://doi.org/10.1016/S0014-3057(98)00029-9

    Article  CAS  Google Scholar 

  43. Veiga VD, Rossignol TM, Crespo JD et al (2017) Tire tread compounds with reduced rolling resistance and improved wet grip. J Appl Polym Sci. https://doi.org/10.1002/app.45334

    Article  Google Scholar 

  44. Zhao XP, Hu H, Zhang DK et al (2019) Curing behaviors, mechanical properties, dynamic mechanical analysis and morphologies of natural rubber vulcanizates containing reclaimed rubber. e-Polym 19(1):482–488. https://doi.org/10.1515/epoly-2019-0051

    Article  CAS  Google Scholar 

  45. Qu LL, Yu GZ, Wang LL et al (2012) Effect of filler-elastomer interactions on the mechanical and nonlinear viscoelastic behaviors of chemically modified silica-reinforced solution-polymerized styrene butadiene rubber. J Appl Polym Sci 126(1):116–126. https://doi.org/10.1002/app.36677

    Article  CAS  Google Scholar 

  46. Zarei M, Naderi G, Bakhshandeh GR et al (2012) Ternary elastomer nanocomposites based on NR/BR/SBR: Effect of nanoclay composition. J Appl Polym Sci 127(3):2038–2045. https://doi.org/10.1002/app.37687

    Article  CAS  Google Scholar 

  47. Peng Z, Kong LX, Li SD et al (2007) Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization. Compos Sci Technol 67(15–16):3130–3139. https://doi.org/10.1016/j.compscitech.2007.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdelsalam AA, Araby S, El-Sabbagh SH et al (2019) Effect of carbon black loading on mechanical and rheological properties of natural rubber/styrene-butadiene rubber/nitrile butadiene rubber blends. J Thermoplast Compos Mater 34(4):490–507. https://doi.org/10.1177/0892705719844556

    Article  CAS  Google Scholar 

  49. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6(19):57–63. https://doi.org/10.1002/app.1962.070061906

    Article  CAS  Google Scholar 

  50. Bras J, Hassan ML, Bruzesse C et al (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32(3):627–633. https://doi.org/10.1016/j.indcrop.2010.07.018

    Article  CAS  Google Scholar 

  51. Lin Y, Chen YZ, Zeng ZK et al (2015) Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos A 70:35–44. https://doi.org/10.1016/j.compositesa.2014.12.008

    Article  CAS  Google Scholar 

  52. Díez-Pascual AM, Naffakh M, Gómez MA et al (2009) Development and characterization of PEEK/carbon nanotube composites. Carbon 47(13):3079–3090. https://doi.org/10.1016/j.carbon.2009.07.020

    Article  CAS  Google Scholar 

  53. Yu LJ, Ahmad SH, Kong I et al (2019) Magnetic, thermal stability and dynamic mechanical properties of beta isotactic polypropylene/natural rubber blends reinforced by NiZn ferrite nanoparticles. Def Technol 15(6):958–963. https://doi.org/10.1016/j.dt.2019.03.001

    Article  Google Scholar 

  54. Sahu P, Sarkar P, Bhowmick AK (2018) Design of a molecular architecture via a green route for an improved silica reinforced nanocomposite using bioresources. ACS Sustainable Chem Eng 6(5):6599–6611. https://doi.org/10.1021/acssuschemeng.8b00383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation Project of China (52064040 and 11562015), the Natural Science Foundation of Inner Mongolia (2018MS05061 and 2020MS05063), the Talent Foundation of Inner Mongolia, the Science and Technology Major Projects of Shanxi Province of China (Project Number: 20181101003), and Youth Fund Project of the Department of Science and Technology of Shanxi Province (201801D221355). Furthermore, the authors would like to thank shiyanjia lab for the support of TEM analysis (www.shiyanjia.com).

Author information

Authors and Affiliations

Authors

Contributions

Writing, Visualization: Weijiang Wang; Supervision, Funding acquisition: Yinmin Zhang; Software, Formal analysis: Yongfeng Zhang; Resources, Conceptualization: Junmin Sun.

Corresponding authors

Correspondence to Yinmin Zhang or Junmin Sun.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 84 kb)

Supplementary file2 (DOC 5017 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, Y., Zhang, Y. et al. Activated calcium silicate/natural rubber composites prepared via latex compounding: Static and dynamic mechanical properties. J Polym Res 29, 301 (2022). https://doi.org/10.1007/s10965-022-03156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03156-6

Keywords

Navigation