Skip to main content
Log in

Time and frequency domain dielectric spectroscopy for in-situ and ex-situ determination of amorphous fractions of isothermally cold-crystallized Polylactic acid

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The three–phase structure of Polylactic acid (PLA), cold crystallized at two different crystallization temperatures (TC), is performed by complementary electrical characterization techniques in a wide frequency range. Initially amorphous samples are crystallized from the glassy state at 80 °C / 4 h and 130 °C / 2 h in two different Dielectric Spectroscopy setups i.e., a typical Dielectric Response setup (0.1 Hz-1 MHz) for TC = 80 °C, and an RF Impedance Analyzer (1 MHz to 1 GHz) for TC = 130 °C. The implementation of both setups allows for the crystallization monitoring by continuous acquisition of the dielectric α-relaxation spectra, since the corresponding dielectric loss maxima are located at around 104 Hz for TC = 80 °C, and 5 × 107 Hz for TC = 130 °C. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) studies reveal the presence of only the α΄-crystal form of PLA at TC = 80 °C, transforming to the more stable α-form at elevated temperatures. Spherulite size and density is monitored by Polarizing Optical Microscopy (POM) and are strongly depended on the crystallization (cold/melt) process for samples crystallized at 130 °C. Determination of the different fractions (Crystalline, Mobile Amorphous and Rigid Amorphous) reveals that samples crystallized at 130 °C exhibit an extra amount of RAF, formed upon cooling below Tg, contrary to the case of samples crystallized at lower temperatures. Combined dielectric response studies over nine orders of magnitude (from 0.1 Hz to 1 GHz) are performed systematically, as a function of temperature, time and frequency and a complete analysis of all relaxation dynamics is presented. The implementation of high frequency dielectric response, along with other typically used techniques, is proven to be a powerful tool for the complete characterization of semicrystalline polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Di Lorenzo ML, Androsch R (2018) Industrial Applications of Poly(lactic acid). In: Advances in Polymer Science. Springer, Cham, Switzerland,  282

  2. Radmanesh S, Shabangiz S, Koupaei N, Hassanzadeh-Tabrizi SA (2022) 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. J Polym Res 29:50. https://doi.org/10.1007/s10965-022-02899-6

    Article  CAS  Google Scholar 

  3. Cocca M, Androsch R, Righetti MC et al (2014) Conformationally disordered crystals and their influence on material properties: The cases of isotactic polypropylene, isotactic poly(1-butene), and poly(l-lactic acid). J Mol Struct 1078:114–132. https://doi.org/10.1016/j.molstruc.2014.02.038

    Article  CAS  Google Scholar 

  4. Kawai T, Rahman N, Matsuba G et al (2007) Crystallization and Melting Behavior of Poly (L-lactic Acid). Macromolecules 40:9463–9469. https://doi.org/10.1021/ma070082c

    Article  CAS  Google Scholar 

  5. Pan P, Kai W, Zhu B et al (2007) Polymorphous crystallization and multiple melting behavior of poly(L-lactide): Molecular weight dependence. Macromolecules 40:6898–6905. https://doi.org/10.1021/ma071258d

    Article  CAS  Google Scholar 

  6. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357. https://doi.org/10.1021/ma0706071

    Article  CAS  Google Scholar 

  7. Di Lorenzo ML, Androsch R (2019) Influence of α′-/α-crystal polymorphism on properties of poly(l-lactic acid). Polym Int 68:320–334. https://doi.org/10.1002/pi.5707

    Article  CAS  Google Scholar 

  8. Aliotta L, Gazzano M, Lazzeri A, Righetti MC (2020) Constrained amorphous interphase in poly(l-lactic acid): Estimation of the Tensile elastic modulus. ACS Omega 5:20890–20902. https://doi.org/10.1021/acsomega.0c02330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mano JF (2007) Structural evolution of the amorphous phase during crystallization of poly (L -lactic acid): A synchrotron wide-angle X-ray scattering study. J Non Cryst Solids 353:2567–2572. https://doi.org/10.1016/j.jnoncrysol.2007.04.022

    Article  CAS  Google Scholar 

  10. Di Lorenzo ML, Cocca M, Malinconico M (2011) Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta 522:110–117. https://doi.org/10.1016/j.tca.2010.12.027

    Article  CAS  Google Scholar 

  11. Li J, Xiao P, Li H et al (2015) Crystalline structures and crystallization behaviors of poly(l-lactide) in poly(l-lactide)/graphene nanosheet composites. Polym Chem 6:3988–4002. https://doi.org/10.1039/c5py00254k

    Article  CAS  Google Scholar 

  12. Hu J, Wang J, Gowd EB et al (2019) Small- and wide-angle X-ray scattering study on α′-to-α transition of Poly(L-lactide acid) crystals. Polymer (Guildf) 167:122–129. https://doi.org/10.1016/j.polymer.2019.01.088

    Article  CAS  Google Scholar 

  13. Ling X, Spruiell JE (2006) Analysis of the Complex Thermal Behavior of Poly(L-lactic acid) Film. I. Samples Crystallized from the Glassy State. J ofPolymer Sci Part B Polym Phys 44:3200–3214. https://doi.org/10.1002/polb

    Article  CAS  Google Scholar 

  14. Pan P, Zhu B, Kai W et al (2008) Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(L-lactide). J Appl Polym Sci 107:54–62. https://doi.org/10.1002/app.27102

    Article  CAS  Google Scholar 

  15. Androsch R, Schick C, Di Lorenzo ML (2014) Melting of conformationally disordered crystals (α ′ phase) of poly(l -lactic acid). Macromol Chem Phys 215:1134–1139. https://doi.org/10.1002/macp.201400126

    Article  CAS  Google Scholar 

  16. Righetti MC, Gazzano M, Delpouve N, Saiter A (2017) Contribution of the rigid amorphous fraction to physical ageing of semi-crystalline PLLA. Polymer (Guildf) 125:241–253. https://doi.org/10.1016/j.polymer.2017.07.089

    Article  CAS  Google Scholar 

  17. Monnier X, Cavallo D, Righetti MC et al (2020) Physical Aging and Glass Transition of the Rigid Amorphous Fraction in Poly( l -lactic acid). Macromolecules 53:8741–8750. https://doi.org/10.1021/acs.macromol.0c01182

    Article  CAS  Google Scholar 

  18. Mijović J, Sy J-W (2002) Molecular dynamics during crystallization of poly(L-lactic acid) As Studied by Broad-band Dielectric Relaxation Spectroscopy. Macromolecules 35:6370–6376. https://doi.org/10.1021/ma0203647

    Article  CAS  Google Scholar 

  19. Wang Y, Funari SS, Mano JF (2006) Influence of semicrystalline morphology on the glass transition of poly(L-lactic acid). Macromol Chem Phys 207:1262–1271. https://doi.org/10.1002/macp.200600114

    Article  CAS  Google Scholar 

  20. Lizundia E, Petisco S, Sarasua JR (2013) Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (L-lactide). J Mech Behav Biomed Mater 17:242–251. https://doi.org/10.1016/j.jmbbm.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  21. Lohmeijer PJA, Goossens JGP, Peters GWM (2017) Quiescent crystallization of poly(lactic acid) studied by optical microscopy and light-scattering techniques. J Appl Polym Sci 134:2–10. https://doi.org/10.1002/app.44566

    Article  CAS  Google Scholar 

  22. Zhang S, Guo B, Reiter G, Xu J (2020) Estimation of the Size of Critical Secondary Nuclei of Melt-Grown Poly(l-lactide) Lamellar Crystals. Macromolecules 53:3482–3492. https://doi.org/10.1021/acs.macromol.0c00113

    Article  CAS  Google Scholar 

  23. Kalish JP, Aou K, Yang X, Hsu SL (2011) Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(l-lactic acid). Polymer 52:814–821. https://doi.org/10.1016/j.polymer.2010.12.042

    Article  CAS  Google Scholar 

  24. Zhang J, Duan Y, Sato H et al (2005) Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021. https://doi.org/10.1021/ma051232r

    Article  CAS  Google Scholar 

  25. Ma B, Wang X, He Y et al (2021) Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. Polymer 212:123280. https://doi.org/10.1016/j.polymer.2020.123280

    Article  CAS  Google Scholar 

  26. Brás AR, Viciosa MT, Wang Y et al (2006) Crystallization of Poly (L -lactic acid) Probed with Dielectric Relaxation Spectroscopy. Macromolecules 39:6513–6520. https://doi.org/10.1021/ma061148r

    Article  CAS  Google Scholar 

  27. Brás AR, Malik P, Dionısio M et al (2008) Influence of Crystallinity in Molecular Motions of Poly(L-lactic acid) Investigated by Dielectric Relaxation Spectroscopy. Macromolecules 41:6419–6430. https://doi.org/10.1021/ma800842a

    Article  CAS  Google Scholar 

  28. Klonos P, Terzopoulou Z, Koutsoumpis S et al (2016) Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(L–lactic acid) and nano-inclusions of 1–3D geometry studied by thermal and dielectric techniques. Eur Polym J 82:16–34. https://doi.org/10.1016/j.eurpolymj.2016.07.002

    Article  CAS  Google Scholar 

  29. Varol N, Monnier X, Delbreilh L et al (2020) Highlight of primary and secondary relaxations in amorphous stereocomplex polylactides. Express Polym Lett 14:48–62. https://doi.org/10.1016/j.polymer.2020.122373

    Article  CAS  Google Scholar 

  30. Zavvou EE, Karahaliou PK, Georga SN, Krontiras CA (2021) Crystallization Behavior and Dielectric Response of Melt Crystallized PLLA/TiO2 Bio Nanocomposites. Mod Concepts Mater Sci 3. https://doi.org/10.33552/MCMS.2021.03.000572

  31. Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450. https://doi.org/10.1016/S0079-6700(02)00085-0

    Article  CAS  Google Scholar 

  32. Righetti MC, Tombari E (2011) Crystalline, mobile amorphous and rigid amorphous fractions in poly(L-lactic acid) by TMDSC. Thermochim Acta 522:118–127. https://doi.org/10.1016/j.tca.2010.12.024

    Article  CAS  Google Scholar 

  33. Klonos P, Pissis P (2017) Effects of interfacial interactions and of crystallization on rigid amorphous fraction and molecular dynamics in polylactide/silica nanocomposites: A methodological approach. Polymer 112:228–243. https://doi.org/10.1016/j.polymer.2017.02.003

    Article  CAS  Google Scholar 

  34. Di Lorenzo ML (2006) The crystallization and melting processes of poly(L-lactic acid). Macromol Symp 234:176–183. https://doi.org/10.1002/masy.200650223

    Article  CAS  Google Scholar 

  35. Righetti MC, Di Lorenzo ML (2011) Melting temperature evolution of non-reorganized crystals. Poly(3-hydroxybutyrate). Thermochim Acta 512:59–66. https://doi.org/10.1016/j.tca.2010.08.023

    Article  CAS  Google Scholar 

  36. Righetti MC, Laus M, Di Lorenzo ML (2014) Rigid amorphous fraction and melting behavior of poly(ethylene terephthalate). Colloid Polym Sci 292:1365–1374. https://doi.org/10.1007/s00396-014-3198-8

    Article  CAS  Google Scholar 

  37. Iannace S, Nicolais L (1997) Isothermal crystallization and chain mobility of poly(L-lactide). J Appl Polym Sci 64:911–919. https://doi.org/10.1002/(SICI)1097-4628(19970502)64:5%3c911::AID-APP11%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  38. Righetti MC, Prevosto D, Tombari E (2016) Time and Temperature Evolution of the Rigid Amorphous Fraction and Differently Constrained Amorphous Fractions in PLLA. Macromol Chem Phys 217:2013–2026. https://doi.org/10.1002/macp.201600210

    Article  CAS  Google Scholar 

  39. Righetti MC (2018) Amorphous Fractions of Poly(lactic acid). In: Di Lorenzo ML, Androsch R (eds) Synthesis, Structure and Properties of Poly(lactic acid). Springer, Cham, Switzerland, p 195

    Google Scholar 

  40. Wunderlich B (2005) Thermal Analysis of Polymeric Materials. Springer, Berlin Heidelberg

    Google Scholar 

  41. Pyda M, Wunderlich B (2005) Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules 38:10472–10479. https://doi.org/10.1021/ma051611k

    Article  CAS  Google Scholar 

  42. Klonos P, Kripotou S, Kyritsis A et al (2015) Glass transition and segmental dynamics in poly(l-lactic acid)/graphene oxide nanocomposites. Thermochim Acta 617:44–53. https://doi.org/10.1016/j.tca.2015.08.020

    Article  CAS  Google Scholar 

  43. Terzopoulou Z, Klonos PA, Kyritsis A et al (2019) Interfacial interactions, crystallization and molecular mobility in nanocomposites of Poly(lactic acid) filled with new hybrid inclusions based on graphene oxide and silica nanoparticles. Polymer 166:1–12. https://doi.org/10.1016/j.polymer.2019.01.041

    Article  CAS  Google Scholar 

  44. Zhang Y, Li J, Zhang Z et al (2019) Dynamical behaviors of polylactide crystallization. J Polym Res 26:72. https://doi.org/10.1007/s10965-019-1698-4

    Article  CAS  Google Scholar 

  45. Havriliak S, Negami SA (1966) A Complex plane analysis of a-dispersions in some polymer systems. J Polym Sci C Polym symp 14:99–117. https://doi.org/10.1002/polc.5070140111

  46. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer (Guildf) 8:161–210. https://doi.org/10.1016/0032-3861(67)90021-3

    Article  CAS  Google Scholar 

  47. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 14:339–355. https://doi.org/10.1111/j.1151-2916.1925.tb16731.x

    Article  Google Scholar 

  48. Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für Anorg und Allg Chemie 156:245–257. https://doi.org/10.1002/zaac.19261560121

    Article  CAS  Google Scholar 

  49. Tomara GN, Karahaliou PK, Anastassopoulos DL et al (2019) Effect of moisture and filler content on the structural, thermal and dielectric properties of polyamide-6/boehmite alumina nanocomposites. Polym Int 68:871–885. https://doi.org/10.1002/pi.5777

    Article  CAS  Google Scholar 

  50. Cangialosi D (2021) Vitrification and Physical Aging in Polymer Glasses by Broadband Dielectric Spectroscopy. In: Broadband Dielectric Spectroscopy: A Modern Analytical Technique. Am Cheml Soc 133–156 SE–6

  51. Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209. https://doi.org/10.1063/1.466117

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge access to the DSC apparatus of the Materials Science Department of the University of Patras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia E. Zavvou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavvou, E.E., Tsaousis, P.C., Barmpaki, A.A. et al. Time and frequency domain dielectric spectroscopy for in-situ and ex-situ determination of amorphous fractions of isothermally cold-crystallized Polylactic acid. J Polym Res 29, 284 (2022). https://doi.org/10.1007/s10965-022-03148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03148-6

Keywords

Navigation