Skip to main content
Log in

Properties of silica/natural rubber composite film and foam: Effects of silica content and sulfur vulcanization system

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This research paper investigated the effects of the silica content and the sulfur vulcanization system on the mechanical properties of silica-filled natural rubber (NR) composite film and foam to be used in various applications. Three different sulfur vulcanization systems (conventional (CV), semi-efficient (Semi-EV), and efficient (EV)) were thoroughly studied to improve the quality of vulcanized NR and their composite with silica. The ground silica was treated with Silane 69. Scanning Electron Microscope demonstrated that the treated silica in NR was well dispersed. In addition, the treated silica resulted in better mechanical properties than for untreated silica. The optimum amount of silica in non-vulcanized rubber was 16 phr. Furthermore, the mechanical properties of vulcanized rubber from the CV system were better than those from the Semi-EV and EV systems due to the higher degree of crosslinking in the former. In addition, when the TSi/NR composite foam specimens at 8 phr had an applied load that was 4.41 times that of non-silica rubber foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tanaka Y (2001) Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem Technol 74(3):355–375

    Article  CAS  Google Scholar 

  2. Shah AA et al (2013) Biodegradation of natural and synthetic rubbers: a review. Int Biodeterior Biodegradation 83:145–157

    Article  CAS  Google Scholar 

  3. Vudjung C et al (2014) Effect of natural rubber contents on biodegradation and water absorption of interpenetrating polymer network (IPN) hydrogel from natural rubber and cassava starch. Energy Procedia 56:255–263

    Article  CAS  Google Scholar 

  4. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym testing 26(3):369–377

  5. Al-Hartomy OA et al (2015) Influence of carbon black/silica ratio on the physical and mechanical properties of composites based on epoxidized natural rubber. J Compos Mater 50(3):377–386

    Article  CAS  Google Scholar 

  6. Longseng R, Khaokong C (2020) Hexamethylene diamine-modified epoxidized natural rubber and its effect on cure characteristics and properties of natural rubber blends. Iran Polym J 29(12):1113–1121

    Article  CAS  Google Scholar 

  7. Tang Y et al (2020) Application of carboxylated ethylene/vinyl acetate copolymer-modified nanosilica in tire tread rubber. Iran Polym J 29(10):853–864

    Article  CAS  Google Scholar 

  8. Roshanaei H, Khodkar F, Alimardani M (2020) Contribution of filler–filler interaction and filler aspect ratio in rubber reinforcement by silica and mica. Iran Polym J 29(10):901–909

    Article  CAS  Google Scholar 

  9. Shiva M, Akhtari SS, Shayesteh M (2020) Effect of mineral fillers on physico-mechanical properties and heat conductivity of carbon black-filled SBR/butadiene rubber composite. Iran Polym J 29(11):957–974

    Article  CAS  Google Scholar 

  10. Thongpin C et al (2009) The effect of excess silane-69 used for surface modification on cure characteristic and mechanical properties of precipitated silica filled natural rubber (PSi/NR). In Adv Maters Res Trans Tech Publ

  11. Thongsang S, Sombatsompop N (2005) Effect of NaOH and Si69 treatments on the properties of fly ash/natural rubber composites. Polym Compos 27(1):30–40

    Article  CAS  Google Scholar 

  12. Sombatsompop N, Wimolmala E, Markpin T (2007) Fly‐ash particles and precipitated silica as fillers in rubbers. II. Effects of silica content and Si69‐treatment in natural rubber/styrene–butadiene rubber vulcanizates. J Appl Polym Sci 104(5):3396–3405

  13. Yao H et al (2015) Effect of silane coupling agent on the fatigue crack propagation of silica‐filled natural rubber. J Appl Polym Sci 132(20)

  14. Lee J-Y et al (2016) Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds. Compos Interfaces 24(7):711–727

    Article  CAS  Google Scholar 

  15. Yan H et al (2005) Effect of nitrile rubber on properties of silica-filled natural rubber compounds. Polym Testing 24(1):32–38

    Article  CAS  Google Scholar 

  16. Chen L et al (2016) From the volume-filling effect to the stress-bearing network: the reinforcement mechanisms of carbon black filler in natural rubber. Macromol Mater Eng 301(11):1390–1401

    Article  CAS  Google Scholar 

  17. Toh-Ae P et al (2013) Comparison of properties of admicellar polymerization surface modified silica-and conventional fillers-reinforced tyre tread compounds. Asian J Chem 25(9):5226

    Article  Google Scholar 

  18. Tohsan A et al (2011) Novel biphasic structured composite prepared by in situ silica filling in natural rubber latex. Polym Adv Technol 23(10):1335–1342

    Article  CAS  Google Scholar 

  19. Bertora A et al (2011) A new modifier for silica in reinforcing SBR elastomers for the tyre industry. Macromol Mater Eng 296(5):455–464

    Article  CAS  Google Scholar 

  20. Chang A et al (2016) Crack growth of natural rubber filled with functionalized silica particles. J Appl Polym Sci 133(6)

  21. Xu T et al (2017) Self‐crosslinkable epoxidized natural rubber–silica hybrids. J Appl Polym Sci 134(14)

  22. Cataldo F (2002) Preparation of silica-based rubber compounds without the use of a silane coupling agent through the use of epoxidized natural rubber. Macromol Mater Eng 287(5):348–352

    Article  CAS  Google Scholar 

  23. Zafarmehrabian R et al (2012) The effects of silica/carbon black ratio on the dynamic properties of the tread compounds in truck tires. J Chem 9(3):1102–1112

    CAS  Google Scholar 

  24. Saengdee L et al (2021) Thermoplastic vulcanizates derived from modified natural rubbers and polypropylene. Iranian Polym J

  25. Buitrago-Suescún O, Britto R (2020) Devulcanization of ground tire rubber: thermo-oxidation followed by microwave exposure in the presence of devulcanizing agent. Iran Polym J 29(7):553–567

    Article  CAS  Google Scholar 

  26. Nakason C, Wannavilai P, Kaesaman A (2006) Effect of vulcanization system on properties of thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends. Polym Testing 25(1):34–41

    Article  CAS  Google Scholar 

  27. Habieb AB et al (2020) Rubber compounds made of reactivated EPDM for fiber-reinforced elastomeric isolators: an experimental study. Iran Polym J 29(11):1031–1043

    Article  CAS  Google Scholar 

  28. Yamano M et al (2021) Preparation and characterization of vulcanized natural rubber with high stereoregularity. Polymer 124271

  29. Heideman G et al (2005) Effect of zinc complexes as activator for sulfur vulcanization in various rubbers. Rubber Chem Technol 78(2):245–257

    Article  CAS  Google Scholar 

  30. Ahsan Q, Mohamad N, Soh T (2015) Effects of accelerators on the cure characteristics and mechanical properties of natural rubber compounds. International Journal of Automotive and Mechanical Engineering 12:2954

    Article  CAS  Google Scholar 

  31. Sahoo S, Bhowmick AK (2007) Influence of ZnO nanoparticles on the cure characteristics and mechanical properties of carboxylated nitrile rubber. J Appl Polym Sci 106(5):3077–3083

    Article  CAS  Google Scholar 

  32. Boonkerd K, Deeprasertkul C, Boonsomwong K (2016) Effect of sulfur to accelerator ratio on crosslink structure, reversion, and strength in natural rubber. Rubber Chem Technol 89(3):450–464

    Article  CAS  Google Scholar 

  33. de Lima DR et al (2021) Effect of vulcanization systems on the properties of natural rubber latex films. Polym Bull 78(7):3943–3957

    Article  CAS  Google Scholar 

  34. Sadequl A et al (1998) The effect of accelerator/sulphur ratio on the scorch time of epoxidized natural rubber. Eur Polymer J 34(1):51–57

    Article  CAS  Google Scholar 

  35. Wimolmala E, Khongnual K, Sombatsompop N (2009) Mechanical and morphological properties of cellular NR/SBR vulcanizates under thermal and weathering ageing. J Appl Polym Sci 114(5):2816–2827

    Article  CAS  Google Scholar 

  36. Frisch KC (1981) History of science and technology of polymeric foams. J Macromol Sci—Chem 15(6):1089–1112

  37. Calvert KO (1982) Polymer latices and their applications. Appl Sci

  38. Ruiz-Herrero J, Rodriguez-Perez M, De Saja J (2005) Design and construction of an instrumented falling weight impact tester to characterise polymer-based foams. Polym Testing 24(5):641–647

    Article  CAS  Google Scholar 

  39. Sims G, Bennett J (1998) Cushioning performance of flexible polyurethane foams. Polym Eng Sci 38(1):134–142

    Article  CAS  Google Scholar 

  40. Wang B et al (2007) Compressive response and energy absorption of foam EPDM. J Appl Polym Sci 105(6):3462–3469

    Article  CAS  Google Scholar 

  41. Luo L et al (2020) Synergistic flame retardancy of aqueous hybridization between iron phosphonate and ammonium polyphosphate towards polyethyleneimine-based foam. Iran Polym J 29(3):265–274

    Article  CAS  Google Scholar 

  42. Bayat H et al (2020) An experimental study on one-step and two-step foaming of natural rubber/silica nanocomposites. Nanotechnol Rev 9:427–435

    Article  CAS  Google Scholar 

  43. Tangpasuthadol V et al (2008) Silica-reinforced natural rubber prepared by the sol-gel process of ethoxysilanes in rubber latex. J Appl Polym Sci 109(1):424–433

    Article  CAS  Google Scholar 

  44. Prapruddivongs C, Thomyasirigul S (2019) Correlative roles of silica as a blowing aid and a Pb(II) adsorbent for natural rubber composite foams. Polym Testing 77

  45. Bayat H, Fasihi M (2019) Effect of coupling agent on the morphological characteristics of natural rubber/silica composites foams. e-Polymers 19:430–436

  46. Panploo K, Chalermsinsuwan B, Poompradub S (2019) Natural rubber latex foam with particulate fillers for carbon dioxide adsorption and regeneration. RSC Adv 9(50):28916–28923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sadequl A (2000) The effect of accelerator/sulphur ratio on the cure time and torque maximum of epoxidized natural rubber. Int J Polym Mater Polym Biomater 46(3–4):597–615

    Article  CAS  Google Scholar 

  48. Liang T, Isayev AI (2019) Effect of ultrasonic extrusion of star styrene-butadiene rubber on properties of carbon black-and silica-filled compounds and vulcanizates. J Appl Polym Sci 136(18):47451

    Article  CAS  Google Scholar 

  49. Rahaman MS et al (2021) Radiation crosslinked polyvinyl alcohol/polyvinyl pyrrolidone/acrylic acid hydrogels: swelling, crosslinking and dye adsorption study. Iranian Polym J 1–16

  50. Gelling I, Tinker A, bin Abdul Rahman H (1991) Solubility parameters of epoxidised natural rubber

  51. Tangboriboonrat P, Suchiva K, Kuhakarn S (1994) Characterization of non-crosslinked natural rubber latex by phase transfer technique. Polymer 35(23):5144–5145

    Article  CAS  Google Scholar 

  52. Bashir AS et al (2015) Mechanical, thermal, and morphological properties of (eggshell powder)-filled natural rubber latex foam. J Vinyl Add Tech 23(1):3–12

    Article  CAS  Google Scholar 

  53. Pornprasit P, Aiemrum A (2018) Natural rubber latex foam for seedling. Proceedings of the 10th Int Conf Sci Technol Innov Sustainable Well-Being (STISWB 2018) 515–519

  54. Ansarifar A et al (2005) The use of a silanised silica filler to reinforce and crosslink natural rubber. Int J Adhes Adhes 25(1):77–86

    Article  CAS  Google Scholar 

  55. Cao L et al (2019) Synergistic reinforcement of silanized silica-graphene oxide hybrid in natural rubber for tire-tread fabrication: A latex based facile approach. Compos B Eng 161:667–676

    Article  CAS  Google Scholar 

  56. Reowdecha M et al (2021) Film and latex forms of silica-reinforced natural rubber composite vulcanized using electron beam irradiation. Heliyon 7(6):e07176

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ngeow Y et al (2019) TEM observation of silane coupling agent in silica-filled rubber tyre compound. Journal of Rubber Research 22(1):1–12

    Article  CAS  Google Scholar 

  58. Li S-D et al (2006) Thermal degradation kinetics and morphology of natural rubber/silica nanocomposites. J Nanosci Nanotechnol 6(2):541–546

    Article  CAS  PubMed  Google Scholar 

  59. Ghorai S et al (2019) Devulcanization of waste rubber and generation of active sites for silica reinforcement. ACS Omega 4(18):17623–17633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Q et al (2012) Reinforcement of natural rubber with core-shell structure silica-poly(methyl methacrylate) nanoparticles. J Nanomater 2012:1–9

    Google Scholar 

  61. Wang Q et al (2012) Reinforcement of natural rubber with core-shell structure silica-poly (methyl methacrylate) nanoparticles. J Nanomater 2012

  62. Saville BA, Watson A (1967) Structural characterization of sulfur-vulcanized rubber networks. Rubber chem technol 40(1):100–148

  63. Morrison N, Porter M (1984) Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization. Rubber Chem Technol 57(1):63–85

    Article  CAS  Google Scholar 

  64. Menon A, Pillai C, Nando G (1994) Chemical crosslink density and network structure of natural rubber vulcanizates modified with phosphorylated cardnol prepolymer. J Appl Polym Sci 51(13):2157–2164

    Article  CAS  Google Scholar 

  65. Quang NT et al (2019) Study on the effect of modified and unmodified silica on the properties of natural rubber vulcanizates. Vietnam Journal of Chemistry 57(3):357–362

    Article  CAS  Google Scholar 

  66. Larpkasemsek A et al (2019) Effects of sulfur vulcanization system on cure characteristics, physical properties and thermal aging of epoxidized natural rubber. J Metals, Mater Minerals 29(1)

  67. Gelling I, Morrison N (1985) Sulfur vulcanization and oxidative aging of epoxidized natural rubber. Rubber Chem Technol 58(2):243–257

    Article  CAS  Google Scholar 

  68. South JT, Case SW, Reifsnider KL (2003) Effects of thermal aging on the mechanical properties of natural rubber. Rubber Chem Technol 76(4):785–802

    Article  CAS  Google Scholar 

  69. Skinner T, Watson A (1969) EV systems for NR. I. The purpose of efficient vulcanization and development of curing system. Rubber Chem Technol 42(2):404–417

  70. Rao V, Johns J (2008) Thermal behavior of chitosan/natural rubber latex blends TG and DSC analysis. J Therm Anal Calorim 92(3):801–806

    Article  CAS  Google Scholar 

  71. Kurian T, George K, Francis D (1988) Effect of vulcanization temperature on the cure characteristics and vulcanizate properties of natural rubber and styrene-butadiene rubber. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 162(1):123–134

    Article  CAS  Google Scholar 

  72. Siriyong T, Keawwattana W (2012) Utilization of different curing systems and natural zeolite as filler and absorbent for natural rubber/nitrile rubber blend. Kasetsart Journal Natural Science 46:918–930

    CAS  Google Scholar 

  73. Gayathri R, Vasanthakumari R, Padmanabhan C (2013) Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers. Int J Sci Eng Res 4(5):301–308

    Google Scholar 

  74. Lee E-K, Choi S-Y (2007) Preparation and characterization of natural rubber foams: Effects of foaming temperature and carbon black content. Korean J Chem Eng 24(6):1070–1075

    Article  CAS  Google Scholar 

  75. Członka S et al (2019) Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polym Testing 75:12–25

    Article  CAS  Google Scholar 

  76. Greenwood NN, Earnshaw A (1997) Chemistry of the Elements. Elsevier Sci

  77. Bayat H, Fasihi M (2019) Curing characteristics and cellular morphology of natural rubber/silica composite foams. Polym Bulletin1–14

  78. Bayat H, Fasihi M (2019) Effect of coupling agent on the morphological characteristics of natural rubber/silica composites foams. e-Polymers 19(1):430–436

  79. Shojaei Dindarloo A et al (2019) Various nano-particles influences on structure, viscoelastic, Vulcanization and mechanical behaviour of EPDM nano-composite rubber foam. Plast, Rubber Compos 48(5):218–225

    Article  CAS  Google Scholar 

  80. Park KW, Kim GH, Chowdhury SR (2008) Improvement of compression set property of ethylene vinyl acetate copolymer/ethylene-1-butene copolymer/organoclay nanocomposite foams. Polym Eng Sci 48(6):1183–1190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Nanotechnology Center (Nanotech), NSTDA, Ministry of Science and Technology, Thailand, through its program of Research Network NANOTEC (RNN) Kasetsart University. The authors would also like to acknowledge the Faculty of Engineering, Kasetsart University Research Development Institute (KURDI), Bangkok, Thailand. This work was partially supported by a grant from the Thailand Research Fund (Grant No. MRG5980252). The Center of Excellence on Petrochemical and Materials Technology (PETROMAT) provided financial support. Special thanks was to Mr. Numporn Thungphotrakul for his kind help in some data correction for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweena Prapainainar.

Ethics declarations

Conflict of interests

Manuscript title: Properties of silica/natural rubber composite film and foam: Effects of silica content and sulfur vulcanization system.

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☒ The authors whose names are listed immediately below certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript. Napaporn Kumkrong Peerapan Dittanet Pongdhorn Saeoui Surapitch Loykulnun Paweena Prapainainar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1287 KB)

Supplementary file2 (DOCX 622 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumkrong, N., Dittanet, P., Saeoui, P. et al. Properties of silica/natural rubber composite film and foam: Effects of silica content and sulfur vulcanization system. J Polym Res 29, 302 (2022). https://doi.org/10.1007/s10965-022-03129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03129-9

Keywords

Navigation