Skip to main content
Log in

Influence of microwave power and HDPE blend ratio on thermal and mechanical properties of kenaf reinforced PLLA/HDPE blended composites

  • Short Communication
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Present work attempted to manufacture kenaf/PLLA/HDPE blended composites using a novel technique of microwave-assisted compression molding (MACM). Since the manufacturing of pure PLLA composite is costly as well as its structural instability while manufacturing via MACM. Therefore, blending of HDPE in PLLA was done for structural stability as well as cost reduction purpose. Influence of microwave power and HDPE blend ratio on thermal and mechanical properties of 20 wt.% kenaf/PLLA/HDPE blended composites were investigated. Effect of various microwave power levels (i.e., 180 W, 360 W, and 540 W) and different HDPE blend percentages (i.e., 0%, 10%, 20%, 30%, and 40%) on mechanical properties of PLLA-based composites studied. Composites fabricated at 180 W and 30% HDPE blend exhibited the highest tensile strength. Elongation of composites decreased at higher microwave power due to decreased relaxation time of molecules. Furthermore, the crystallinity of the composites increased with increasing wt.% of the HDPE blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Vinod A, Sanjay MR, Siengchin S et al (2020) Renewable and sustainable biobased materials : An assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978. https://doi.org/10.1016/j.jclepro.2020.120978

    Article  CAS  Google Scholar 

  2. Sanjay MR, Siengchin S (2021) Editorial corner – a personal view exploring the applicability of natural fibers for the development of biocomposites. Express Polym Lett 15:193. https://doi.org/10.3144/expresspolymlett.2021.17

    Article  Google Scholar 

  3. Sanjay MR, Madhu P, Jawaid M et al (2018) Characterization and properties of natural fiber polymer composites: A comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  CAS  Google Scholar 

  4. Madhu P, Sanjay MR, Senthamaraikannan P et al (2017) A review on synthesis and characterization of commercially available natural fibers: Part II. J Nat Fibers 0478:1–12. https://doi.org/10.1080/15440478.2017.1379045

    Article  Google Scholar 

  5. Adhikari J, Biswas B, Chabri S et al (2017) Effect of functionalized metal oxides addition on the mechanical, thermal and swelling behaviour of polyester/jute composites. Eng Sci Technol an Int J 20:760–774. https://doi.org/10.1016/j.jestch.2016.10.016

    Article  Google Scholar 

  6. Ismail SO, Dhakal HN, Popov I, Beaugrand J (2016) Comprehensive study on machinability of sustainable and conventional fibre reinforced polymer composites. Eng Sci Technol an Int J 19:2043–2052. https://doi.org/10.1016/j.jestch.2016.07.010

    Article  Google Scholar 

  7. Medupin RO, Abubakre OK, Abdulkareem AS et al (2017) Thermal and physico-mechanical stability of recycled high density polyethylene reinforced with oil palm fibres. Eng Sci Technol an Int J 20:1623–1631. https://doi.org/10.1016/j.jestch.2017.12.005

    Article  Google Scholar 

  8. Takagi H (2019) Review of functional properties of natural fiber-reinforced polymer composites: Thermal insulation, biodegradation and vibration damping properties. Adv Compos Mater 28:525–543. https://doi.org/10.1080/09243046.2019.1617093

    Article  CAS  Google Scholar 

  9. Cao Y, Goda K, Shibata S (2007) Development and mechanical properties of bagasse fiber reinforced composites. Adv Compos Mater 16:283–298. https://doi.org/10.1163/156855107782325195

    Article  CAS  Google Scholar 

  10. Mohan TP, Kanny K (2012) Effect of nanoclay in HDPE-glass fiber composites on processing, structure, and properties. Adv Compos Mater 21:315–331. https://doi.org/10.1080/09243046.2012.736348

    Article  CAS  Google Scholar 

  11. Eslami-Farsani R (2015) Effect of fiber treatment on the mechanical properties of date palm fiber reinforced PP/EPDM composites. Adv Compos Mater 24:27–40. https://doi.org/10.1080/09243046.2013.871177

    Article  CAS  Google Scholar 

  12. Singh MK, Zafar S (2019) Development and mechanical characterization of microwave-cured thermoplastic based natural fibre reinforced composites. J Thermoplast Compos Mater 32:1427–1442. https://doi.org/10.1177/0892705718799832

    Article  CAS  Google Scholar 

  13. Nofar M, Sacligil D, Carreau PJ et al (2019) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Yang J, Qi X, Zhang N et al (2018) Carbon nanotubes toughened immiscible polymer blends. Compos Commun 7:51–64. https://doi.org/10.1016/j.coco.2017.12.010

    Article  Google Scholar 

  15. Wang Z, Wang X, Zhao N et al (2021) The desirable dielectric properties and high thermal conductivity of epoxy composites with the cobweb-structured SiCnw–SiO2–NH2 hybrids. J Mater Sci Mater Electron 32:20973–20984. https://doi.org/10.1007/s10854-021-06543-9

    Article  CAS  Google Scholar 

  16. Wang Z, Wang X, Wang S et al (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich aln/epoxy composites. Nanomaterials. https://doi.org/10.3390/nano11081898

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Meng G, Wang L et al (2021) Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-81925-x

    Article  CAS  Google Scholar 

  18. Forouharshad M, Gardella L, Furfaro D et al (2015) A low-environmental-impact approach for novel bio-composites based on PLLA/PCL blends and high surface area graphite. Eur Polym J 70:28–36. https://doi.org/10.1016/j.eurpolymj.2015.06.016

    Article  CAS  Google Scholar 

  19. Shao LN, Chen J, Dai J et al (2015) Morphology, rheology and electrical resistivity of PLLA/HDPE/CNT nanocomposites: Effect of maleic anhydride. Mater Chem Phys 152:104–112. https://doi.org/10.1016/j.matchemphys.2014.12.020

    Article  CAS  Google Scholar 

  20. Varsavas SD, Kaynak C (2018) Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide. Compos Commun 8:24–30. https://doi.org/10.1016/j.coco.2018.03.003

    Article  Google Scholar 

  21. Li DF, Zhao X, Jia YW et al (2018) Tough and flame-retardant poly(lactic acid) composites prepared via reactive blending with biobased ammonium phytate and in situ formed crosslinked polyurethane. Compos Commun 8:52–57. https://doi.org/10.1016/j.coco.2018.04.001

    Article  Google Scholar 

  22. Zhu L, Qiu J, Liu W, Sakai E (2019) Mechanical and thermal properties of rice Straw/PLA modified by nano Attapulgite/PLA interfacial layer. Compos Commun 13:18–21. https://doi.org/10.1016/j.coco.2019.02.001

    Article  Google Scholar 

  23. El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303. https://doi.org/10.1016/j.matdes.2012.04.003

    Article  CAS  Google Scholar 

  24. Lin TA, Lin MC, Lin JY et al (2020) Modified polypropylene/ thermoplastic polyurethane blends with maleic-anhydride grafted polypropylene: blending morphology and mechanical behaviors. J Polym Res. https://doi.org/10.1007/s10965-019-1974-3

    Article  Google Scholar 

  25. Terbish N, Lee CH, Popuri SR, Nalluri LP (2020) An investigation into polymer blending, plasticization and cross-linking effect on the performance of chitosan-based composite proton exchange membranes for microbial fuel cell applications. J Polym Res. https://doi.org/10.1007/s10965-020-02259-2

    Article  Google Scholar 

  26. Zhang S, Liu P, Zhao X, Xu J (2018) Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J Polym Res. https://doi.org/10.1007/s10965-018-1471-0

    Article  Google Scholar 

  27. Singh MK, Zafar S (2020) Effect of layering sequence on mechanical properties of woven kenaf/jute fabric hybrid laminated microwave-processed composites. J Ind Text 00:1–22. https://doi.org/10.1177/1528083720911219

    Article  Google Scholar 

  28. Singh MK, Zafar S (2018) Influence of microwave power on mechanical properties of microwave-cured polyethylene/coir composites. J Nat Fibers 17:845–860. https://doi.org/10.1080/15440478.2018.1534192

    Article  CAS  Google Scholar 

  29. Rao S, Rao R (2008) Cure studies on bifunctional epoxy matrices using a domestic microwave oven. Polym Test 27:645–652. https://doi.org/10.1016/j.polymertesting.2008.04.005

    Article  CAS  Google Scholar 

  30. Schneider HA, Di Marzio EA (1992) The glass temperature of polymer blends: comparison of both the free volume and the entropy predictions with data. Polymer (Guildf) 33:3453–3461. https://doi.org/10.1016/0032-3861(92)91103-9

    Article  CAS  Google Scholar 

  31. Zimmermann MVG, da Silva MP, Zattera AJ, Santana RMC (2018) Poly(lactic acid) foams reinforced with cellulose micro and nanofibers and foamed by chemical blowing agents. J Cell Plast 54:577–596. https://doi.org/10.1177/0021955X17720155

    Article  CAS  Google Scholar 

  32. Quitadamo A, Massardier V, Valente M (2019) Eco-friendly approach and potential biodegradable polymer matrix for WPC composite materials in outdoor application. Int J Polym Sci. https://doi.org/10.1155/2019/3894370

    Article  Google Scholar 

  33. Tamiya T, Cui X, Hsu Y-I et al (2020) Enhancement of interfacial adhesion in immiscible polymer blend by using a graft copolymer synthesized from propargyl-terminated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Eur Polym J 130:109662. https://doi.org/10.1016/j.eurpolymj.2020.109662

    Article  CAS  Google Scholar 

  34. Hang X, Li Y, Hao X et al (2017) Effects of temperature profiles of microwave curing processes on mechanical properties of carbon fibre-reinforced composites. Proc Inst Mech Eng Part B J Eng Manuf 231:1332–1340. https://doi.org/10.1177/0954405415596142

    Article  CAS  Google Scholar 

  35. Verma N, Singh MK, Zafar S, Pathak H (2021) Comparative study of in-situ temperature measurement during microwave-assisted compression-molding and conventionally compression-molding process. CIRP J Manuf Sci Technol 35:336–345. https://doi.org/10.1016/j.cirpj.2021.07.005

    Article  Google Scholar 

Download references

Acknowledgements

First author, Manoj gratefully acknowledges IIT Mandi and MHRD, Government of India, for his Ph.D. work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Singh.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Zafar, S., Rangappa, S.M. et al. Influence of microwave power and HDPE blend ratio on thermal and mechanical properties of kenaf reinforced PLLA/HDPE blended composites. J Polym Res 29, 268 (2022). https://doi.org/10.1007/s10965-022-03120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03120-4

Keywords

Navigation