Skip to main content
Log in

Thermoset shape memory polymer with permanent shape reconfigurability based on dynamic disulfide bonds

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermoset shape memory polymers (TSMPs) show improved shape recovery and mechanical robust compared with the thermoplastic SMPs, but also exhibit restricted shape transformation and inferior reprocess-ability. Recently, introducing the dynamic bonds into TSMPs will endow the stable crosslinking topology with dynamic arrangement ability, which will address above issues. However, as widely used dynamic bonds in dynamic TSMPs such as urethane or ester have to be activated in the presence of external catalysts or initiators to accomplish exchange reaction. Therefore, it is highly desirable to develop TSMPs which possess excellent solid-state plasticity without catalysts or initiators, and it is urgent and essential to employ different dynamic bonds to broaden preparation methods and diversity of dynamic TSMPs. In this work, we fabricated dynamic TSMPs based on dynamic disulfide bonds to achieve solid-state plasticity and complex deformation. The as-obtained TSMPs exhibit good thermal properties, mechanic robust as traditional TSMPs. Besides, the acquired TSMPs show outstanding shape memory property in shape fixed 99% and shape recovery rate 98%. The obtained TSMPs could be suitable to a variety of future engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arvanitakis AI (2020) A constitutive level-set model for shape memory alloys. Meccanica 55:1585–1601

    Article  Google Scholar 

  2. Zhang N, Zaeem MA (2019) Nanoscale self-healing mechanisms in shape memory ceramics. Npj Comput Mater 5:1–8

    Article  CAS  Google Scholar 

  3. Bai Y, Zhang J-w, Wen D, Gong P, Liu J, Ju J, Chen X (2020) A reconfigurable, self-healing and near infrared light responsive thermoset shape memory polymer. Compos Sci Technol 187:107940

    Article  CAS  Google Scholar 

  4. Wick CD, Peters AJ, Li G (2020) Quantifying the contributions of energy storage in a thermoset shape memory polymer with high stress recovery: a molecular dynamics study. Polymer 213:123319

  5. Yang L, Zhang G, Zheng N, Zhao Q, Xie T (2017) A metallosupramolecular shape-memory polymer with gradient thermal plasticity. Angew Chem Int Ed Engl 56:12599–12602

    Article  CAS  PubMed  Google Scholar 

  6. Huang X, Zhang F, Liu Y, Leng J (2020) Active and deformable organic electronic devices based on conductive shape memory polyimide. ACS Appl Mater Interfaces 12:23236–23243

    Article  CAS  PubMed  Google Scholar 

  7. Yamamura S, Iwase E (2021) Hybrid hinge structure with elastic hinge on self-folding of 4D printing using a fused deposition modeling 3D printer. Mater Des 203:109605

    Article  CAS  Google Scholar 

  8. Zhang X, Sun GP, Zhang XQ (2020) A novel thermoplastic shape memory polymer with solid-state plasticity derived from exchangeable hydrogen bonds. Rsc Adv 10:9387–9395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie YF, Lei D, Wang SF, Liu ZH, Sung LJ, Zhang JT, Qing FL, He CL, You ZW (2019) A biocompatible, biodegradable, and functionalizable copolyester and its application in water-responsive shape memory scaffold. Acs Biomater Sci Eng 5:1668–1676

    Article  CAS  Google Scholar 

  10. Zhang YC, Liao JX, Wang T, Sun WX, Tong Z (2018) Polyampholyte hydrogels with pH modulated shape memory and spontaneous actuation. Adv Funct Mater 28:1707245

    Article  CAS  Google Scholar 

  11. Cehula J, Prusa V (2020) Computer modelling of origami-like structures made of light activated shape memory polymers. Int J Eng Sci 150:103235

    Article  Google Scholar 

  12. Ji S, Fan F, Sun C, Yu Y, Xu H (2017) Visible light-induced plasticity of shape memory polymers. ACS Appl Mater Interfaces 9:33169–33175

    Article  CAS  PubMed  Google Scholar 

  13. Hong-zhi W, Peng C, Yan C, Cai C, Shi Y (2019) Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing. Mater Des 171:107704

    Article  CAS  Google Scholar 

  14. Feng W, Zhou WF, Zhang SD, Fan YJ, Yasin A, Yang HY (2015) UV-controlled shape memory hydrogels triggered by photoacid generator. Rsc Adv 5:81784–81789

    Article  CAS  Google Scholar 

  15. Li A, Fan JZ, Li GQ (2018) Recyclable thermoset shape memory polymers with high stress and energy output via facile UV-curing. J Mater Chem A 6:11479–11487

    Article  CAS  Google Scholar 

  16. Fan J, Li G (2018) High enthalpy storage thermoset network with giant stress and energy output in rubbery state. Nat Commun 9:642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Liu K, Han L, Hu W, Ji L, Zhu S, Wan Z, Yang X, Wei Y, Dai Z, Zhao Z, Li Z, Wang P, Tao R (2020) 4D printed zero Poisson’s ratio metamaterial with switching function of mechanical and vibration isolation performance. Mater Des 196:109153

    Article  CAS  Google Scholar 

  18. Gao H, Li JR, Zhang FH, Liu YJ, Leng JS (2019) The research status and challenges of shape memory polymer-based flexible electronics. Mater Horiz 6:931–944

    Article  CAS  Google Scholar 

  19. Zhao W, Liu LW, Zhang FH, Leng JS, Liu YJ (2019) Shape memory polymers and their composites in biomedical applications. Mat Sci Eng C-Mater 97:864–883

    Article  CAS  Google Scholar 

  20. Delaey J, Dubruel P, Van Vlierberghe S (2020) Shape‐memory polymers for biomedical applications. Adv Funct Mater 30:1909047

    Article  CAS  Google Scholar 

  21. Li YX, Liu RX, Liu ZS (2018) The dynamic behaviors of a shape memory polymer membrane. Acta Mech Solida Sin 31:635–651

    Article  Google Scholar 

  22. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shap… memory polymers: Structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  CAS  Google Scholar 

  23. Fu XW, Yuan Y, Liu ZM, Yan PY, Zhou CL, Lei JX (2017) Thermoplastic shape memory polymers with tailor-made trigger temperature. Eur Polym J 93:307–313

    Article  CAS  Google Scholar 

  24. Huang L, Yang YY, Yuan DD, Cai XF (2021) Solid-solid phase-change materials with excellent mechanical property and solid state plasticity based on dynamic urethane bonds for Thermal Energy Storage. J Energy Storage 36:102343

  25. Lu L, Fan JZ, Li GQ (2016) Intrinsic healable and recyclable thermoset epoxy based on shape memory effect and transesterification reaction. Polymer 105:10–18

    Article  CAS  Google Scholar 

  26. Yang Z, Wang Q, Wang T (2016) Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl Mater Interfaces 8:21691–21699

    Article  CAS  PubMed  Google Scholar 

  27. Gao Y, Liu WF, Zhu SP (2019) Thermoplastic polyolefin elastomer blends for multiple and reversible shape memory polymers. Ind Eng Chem Res 58:19495–19502

    Article  CAS  Google Scholar 

  28. Zheng N, Fang GQ, Cao ZL, Zhao Q, Xie T (2015) High strain epoxy shape memory polymer. Polym Chem-Uk 6:3046–3053

    Article  CAS  Google Scholar 

  29. Miao W, Zou W, Jin B, Ni C, Zheng N, Zhao Q, Xie T (2020) On demand shape memory polymer via light regulated topological defects in a dynamic covalent network. Nat Commun 11:4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang L, Lei Y, Xiao Y, Xu HL, Yuan AQ, Wei ZK, Chen Y, Lei JX (2021) Elevation of mechanically robust and reprocessable thermoset polyurea composites towards permanent shape reconfiguration controlled by heat and electricity. Chem Eng J 410:128354

    Article  CAS  Google Scholar 

  31. Krishnakumar B, Sanka RVSP, Binder WH, Parthasarthy V, Rana S, Karak N (2020) Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers. Chem Eng J 385:123820

    Article  CAS  Google Scholar 

  32. Chang K, Jia H, Gu S-Y (2019) A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur Polym J 112:822–831

    Article  CAS  Google Scholar 

  33. Yan P, Zhao W, Jiang L, Wu B, Hu K, Yuan Y, Lei J (2018) Reconfiguration and shape memory triggered by heat and light of carbon nanotub… polyurethane vitrimer composites. J Appl Polym Sci 135:45784

    Article  CAS  Google Scholar 

  34. Zheng H, Wang SQ, Lu C, Ren YF, Liu Z, Ding DL, Wu ZQ, Wang XY, Chen YH, Zhang QY (2020) Thermal, near-infrared light, and amine solvent triple-responsive recyclable imine-type vitrimer: shape memory, accelerated photohealing/welding, and destructing behaviors. Ind Eng Chem Res 59:21768–21778

    Article  CAS  Google Scholar 

  35. Zhang H, Wang D, Wu N, Li C, Zhu C, Zhao N, Xu J (2020) Recyclable, self-healing, thermadapt triple-shape memory polymers based on dual dynamic bonds. ACS Appl Mater Interfaces 12:9833–9841

    Article  PubMed  CAS  Google Scholar 

  36. Yang Y, Huang L, Wu R, Fan W, Dai Q, He J, Bai C (2020) Assembling of reprocessable polybutadiene-based vitrimers with high-strength and shape-memory via catalyst-free imine-coordinated boroxine. ACS Appl Mater Interfaces 12:33305–33314

    Article  CAS  PubMed  Google Scholar 

  37. Wu Q, Xiong H, Peng Y, Yang Y, Kang J, Huang G, Ren X, Wu J (2019) Highly stretchable and self-healing “Solid-Liquid” elastomer with strain-rate sensing capability. ACS Appl Mater Interfaces 11:19534–19540

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, He Q, Wang Y, Cai S (2019) Programmable actuation of liquid crystal elastomers via"living” exchange reaction. Soft Matter 15:2811–2816

    Article  CAS  PubMed  Google Scholar 

  39. Defize T, Thomassin JM, Alexandre M, Gilbert B, Riva R, Jerome C (2016) Comprehensive study of the thermo-reversibility of Diels-Alder based PCL polymer networks. Polymer 84:234–242

    Article  CAS  Google Scholar 

  40. Kuang X, Liu G, Dong X, Wang D (2016) Triple-shape memory epoxy based on Diel“ Alder adduct molecular switch. Polymer 84:1–9

    Article  CAS  Google Scholar 

  41. Zheng N, Fang Z, Zou W, Zhao Q, Xie T (2016) Thermoset shape‐memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew Chem Int Ed Engl 55:11421–11425

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Pan Y, Zheng Z, Ding X (2018) Reconfigurable and reprocessable thermoset shape memory polymer with synergetic triple dynamic covalent bonds. Macromol Rapid Commun 39:e1800128

    Article  PubMed  CAS  Google Scholar 

  43. Zou FX, Chen H, Fu SQ, Chen SJ (2018) Shape memory materials based on adamantane-containing polyurethanes. Rsc Adv 8:25584–25591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chien YC, Chuang WT, Jeng US, Hsu SH (2017) Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers. ACS Appl Mater Interfaces 9:5419–5429

    Article  CAS  PubMed  Google Scholar 

  45. Zhang LH, Rowan SJ (2017) Effect of sterics and degree of cross-linking on the mechanical properties of dynamic poly (alkylurea–urethane) networks. Macromolecules 50:5051–5060

    Article  CAS  Google Scholar 

  46. Zheng N, Hou JJ, Xu Y, Fang ZZ, Zou WK, Zhao Q, Xie T (2017) Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance. ACS Macro Lett 6:326–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (No. 51873114). Weibo Kong thanks the financial support from the China Scholarship Council (201806240050) and Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibo Kong.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Huang, L., Zhao, F. et al. Thermoset shape memory polymer with permanent shape reconfigurability based on dynamic disulfide bonds. J Polym Res 29, 278 (2022). https://doi.org/10.1007/s10965-022-03114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03114-2

Keywords

Navigation