Skip to main content
Log in

Morphological, rheological and thermal characteristics of biopolymeric microcapsules loaded with plant stimulants

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Morphological, rheological, and thermal properties of biopolymeric microcapsules loaded with novel plant growth regulators (2,3-dehydroaspartic acid dimethyl ester (PGR1), Z-isomer of the potassium salt of 2-amino-3-methoxycarbonylacrylic acid (PGR2) and 1-methyl-3-methylamino-maleimide (PGR3)) were studied. Microcapsule formulations containing PGR2 or PGR3 had a granular surface structure with substructures, whereas those containing PGR1 had smooth surfaces with no grain substructures. All formulations had storage moduli (G ′) greater than loss moduli (G ′′), indicating viscoelastic solid behavior. The application of angular frequency over the range tested did not significantly change G’ and G’’ values indicating well-ordered structures for all samples. Compared to other formulations, the highest values of storage modulus, yield strength and flow point obtained for formulations with PGR3 indicated an advantage in terms of stability in various physical environments. Thermal analysis showed good thermal stability of all formulations and is consistent with rheological properties confirming well-ordered structures. Encapsulated PGRs affect the intensity of intermolecular forces (electrostatic interaction and hydrogen bonds), thus changing the crosslinking density of the alginate network and the basic physicochemical properties of the formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hack B, Egger H, Uhlemann J, Henriet M, Wirth W, Vermeer AWP, Duff DG (2012) Advanced agrochemical formulations through encapsulation strategies? Chem Ing Tec. https://doi.org/10.1002/cite.201100212

    Article  Google Scholar 

  2. Bhatia M (2020) In: Sonawane SH, Bhanvase BA, Sivakumar M (eds) Encapsulation of active molecules and their delivery system, Elsevier. https://doi.org/10.1016/B978-0-12-819363-1.00008-9

  3. Schoebitz M, López Belchí MD (2016) In: Arora N, Mehnaz S, Balestrini R (eds) Bioformulations for sustainable agriculture, Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_14

  4. Vinceković M, Jalšenjak N, Topolovec-Pintarić S, Đermić E, Bujan M, Jurić S (2016) Encapsulation of biological and chemical agents for plant nutrition and protection: Chitosan/Alginate microcapsules loaded with copper cations and Trichoderma viride. J Agri Food Chem. https://doi.org/10.1021/acs.jafc.6b02879

    Article  Google Scholar 

  5. Vinceković M, Jurić S, Đermić W, Topolovec-Pintarić S (2017) Kinetics and mechanisms of chemical and biological agents release from biopolymeric microcapsules. J Agri Food Chem. https://doi.org/10.1021/acs.jafc.7b04075

    Article  Google Scholar 

  6. Vinceković M, Vlahoviček-Kahlina K, Jurić S (2019) Trends in Agricultural Production: Microencapsulation. Nov Tech Nutr Food Sci. https://doi.org/10.31031/ntnf.2019.04.000583

  7. Campos EVR, Oliveira R, Fraceto L (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: A review. Adv Sci Eng Med. https://doi.org/10.1166/asem.2014.1538

    Article  Google Scholar 

  8. Gray A, Egan S, Bakalis S, Zhang Z (2016) Determination of microcapsule physicochemical, structural, and mechanical properties. Particuology. https://doi.org/10.1016/j.partic.2015.06.002

    Article  Google Scholar 

  9. Vlahoviček-Kahlina K, Jurić S, Marijan M, Mutalijyeva B, Khalus SV, Prosyanik AV, Vinceković M (2021) Synthesis, characterization, and encapsulation of novel plant growth regulators (PGRs) in biopolymer matrices. Int J Mol Sci. https://doi.org/10.3390/ijms22041847

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kudasova D, Mutaliyeva B, Vlahoviček-Kahlina K, Jurić S, Marijan M, Khalus SV, Prosyanik AV, Šegota S, Španić N, Vinceković M (2021) Encapsulation of synthesized plant growth regulator based on copper(II) complex in chitosan/alginate microcapsules. Int J Mol Sci. https://doi.org/10.3390/ijms22052663

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arzate-Vázquez A, Chanona-Pérez JJ, Calderón-Domínguez G, Terres-Rojas E, Garibay-Feblesc V, Martinez-Rivas A, Gutiérrez-López GF (2002) Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2011.07.044

    Article  Google Scholar 

  12. Simpliciano C, Clark L, Asi B, Chu N, Mercado M, Diaz S, Goedert M, Mobed-Miremadi M (2013) Crosslinked alginate film pore size determination using atomic force Microscopy and validation using diffusivity determinations. J Surf Eng Mat Adv Techn. https://doi.org/10.4236/jsemat.2013.34A1001

    Article  Google Scholar 

  13. Jurić S, Šegota S, Vinceković M (2019) Influence of surface morphology and structure of alginate microparticles on the bioactive agents release behavior. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2019.04.096

    Article  Google Scholar 

  14. Liu X, Xue W, Liu Q, Yu W, Fu Y, Xiong X, Ma X, Yuan Q (2004) Swelling behaviour of alginate–chitosan microcapsules prepared by external gelation or internal gelation technology. https://doi.org/10.1016/j.carbpol.2004.03.011

  15. Fereidoon A, Jahanshahi M, Ghorbanzadeh Ahangari M, Hemmati M (2014) Effect of nanoparticles on the micromechanical and surface properties of poly(urea-formaldehyde) composite microcapsules. Compos Part B-Eng. https://doi.org/10.1016/j.compositesb.2013.08.071

    Article  Google Scholar 

  16. Cheng W, Dunn PF, Brach RM (2002) Surface roughness effects on microparticle adhesion. J Adhesion. https://doi.org/10.1080/00218460214510

    Article  Google Scholar 

  17. Roger S, Talbot D, Bee A (2006) Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. J Magn Mater. https://doi.org/10.1016/j.jmmm.2006.01.005

    Article  Google Scholar 

  18. Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethylchitosan. Biomacromlecules. https://doi.org/10.1021/bm0610065

    Article  Google Scholar 

  19. Aminabhavi TA, Agnihotri SA, Naidu BVK (2004) Rheological properties and drug release characteristics ofpH-responsive hydrogels. J Appl Polym Sci. https://doi.org/10.1002/app.21139

    Article  Google Scholar 

  20. Jabeen S, Maswal M, Chat OA, Rather GM, Dar AA (2016) Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2015.12.013

    Article  PubMed  Google Scholar 

  21. Cuomo F, Cofelice M, Lopez F (2019) Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers. https://doi.org/10.3390/polym11020259

    Article  PubMed  PubMed Central  Google Scholar 

  22. Duan P, Kandemir N, Wang J, Chen J (2017) Rheological characterization of alginate based hydrogels for tissue engineering. MRS Advances. https://doi.org/10.1557/adv.2017.8

    Article  Google Scholar 

  23. Kim K, Liu X, Zhang Y, Sun Y, Cheng J, Wu XY (2009) Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper. Biomed Microdevices. https://doi.org/10.1007/s10544-008-9248-6

    Article  PubMed  Google Scholar 

  24. Leick S, Kott M, Degen P, Henning S, Päsler T, Suter D, Rehage H (2011) Mechanical properties of liquid-filled shellac composite capsules. Phys Chem Chem Phys PCCP. https://doi.org/10.1039/c0cp01803a

    Article  PubMed  Google Scholar 

  25. Low ZW, Chee PL, Kai D, Loh XY (2015) The role of hydrogen bonding in alginate/poly(acrylamide-co-dimethylacrylamide) and alginate/poly(ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels. RSC Adv. https://doi.org/10.1039/C5RA09926A

    Article  Google Scholar 

  26. Florea-Sprioiu A, Bala D, Balan A, Nichita C, Stamatin I (2012) Alginate matrices prepared in sub and supercritical CO2. Dig J Nanomater Biostructures 7:1549–1555

    Google Scholar 

  27. Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I (2009) Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2009.02.019

    Article  Google Scholar 

  28. Riberio AJ, Silva C, Ferreira D, Vega F (2005) Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. Eur J Phar Sci. https://doi.org/10.1016/j.ejps.2005.01.016

    Article  Google Scholar 

  29. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Eclet Quim. https://doi.org/10.1590/S0100-46702004000200009

    Article  Google Scholar 

  30. Patel N, Lalwani D, Gollmer S, Injeti E, Sari Y, Nesamony J (2016) Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog Biomater. https://doi.org/10.1007/s40204-016-0051-9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bagre AC, Jain K, Jain NK (2013) Alginate coated chitosan core-shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2013.08.037

    Article  PubMed  Google Scholar 

  32. Maitra J, Shkula VK (2014) Crosslinking in hydrogels - A review. Amer J Polym Sci. https://doi.org/10.5923/j.ajps.20140402.01

    Article  Google Scholar 

  33. Bajpai SK, Sharma SI (2004) Investigation of swelling/degradation behavior of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2004.01.002

    Article  Google Scholar 

  34. Roy A, Bajapi J, Bajapi AK (2009) Development of calcium alginate-gelatin based microspheres for controlled release of endosulfan as a model pesticide. Indian J Chem Technol 16:388–395

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Education and Sciences of the Republic of Kazakhstan for the support of project AP 05132810 “Scientific-practical bases of microencapsulation of bioactive substances and principally new stimulators of plant development with the purpose of agricultural production intensification” and CloudiFacturing Project — Grant Agreement number: 768892 — H2020-IND-CE-2016-17/H2020-FOF-2017.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author designed the research work and wrote the manuscript. Other authors carried out work under the guidance of the corresponding author. Conceptualization, M.V. and B.M.; Data curation, M.M., S.J. and A.V.P.; Formal analysis, S.J., M.M. and A.V.P.; Funding acquisition, B.M.; Investigation, N.Š., S.Š. N.Š.V., S.J. and M.M.; Methodology, M.V. and S.J.; Project administration, B.M.; Supervision, M.V.; Validation, M.V.; Visualization, M.V..; Writing—original draft, M.V.; Writing—review & editing, MV. and B.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Marko Vinceković.

Ethics declarations

Conflict of Interest

This manuscript describes original work and is not under consideration by any other journal. All authors approved the manuscript and this submission. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinceković, M., Jurić, S., Šegota, S. et al. Morphological, rheological and thermal characteristics of biopolymeric microcapsules loaded with plant stimulants. J Polym Res 29, 204 (2022). https://doi.org/10.1007/s10965-022-03057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03057-8

Keywords

Navigation