Skip to main content

Advertisement

Log in

Hyaluronic acid-based self-repairing hydrogel preparation and 3D cell culture

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Aldehyde-modified hyaluronic acid (Ald-HA) was prepared and characterized by a variety of methods, and then Ald-HA was used as hydrogel skeleton to fabricate self-healing hydrogel with biocompatible polyethylene glycol diacylhydrazide (PEG DH) as cross-linkers. For this purpose, aqueous solutions of Ald-HA and PEG DH solutions with different molecular weight were used to prepare HA-based hydrogel for potential applications in biological applications. This novel biodegradable hydrogel behaved with good mechanical properties and self-repairing performance. Moreover, the hydrogels have good porous structure fit for controlled release of doxorubicin (DOX∙HCl) and showed successive slow release profile. Importantly, CCK-8 assay demonstrated that the HA-based hydrogel possessed good cytocompatibility to JB6 P + cells. The 3D cell culture experiment reveals that the hydrogel acted as a good framework for cell growth and reproduction. These experiments indicate that the new HA-based hydrogel has excellent bio-compatibility for both preclinical and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  2. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  3. Simon KA, Warren NJ, Mosadegh B, Mohammady MR, Whitesides GM, Armes SP (2015) Disulfide-based diblock copolymer worm gels: a wholly-synthetic thermoreversible 3D matrix for sheet-based cultures. Biomacromol 16:3952–3958

    Article  CAS  Google Scholar 

  4. Missirlis D, Kawamura R, Tirelli N, Hubbell JA (2006) Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. Eur J Pharm Sci 120–129

  5. Wichterle O, Lím DJN (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  6. Smith KL, Schimpf ME, Thompson KE (1990) Bioerodible polymers for delivery of macromolecules. Adv Drug Deliver Rev 4:343–357

    Article  CAS  Google Scholar 

  7. Ulbrich K, Subr V, Podpěrová P, Burešová M (1995) Synthesis of novel hydrolytically degradable hydrogels for controlled drug release. J Control Release 34:155–165

    Article  CAS  Google Scholar 

  8. Misra GP, Siegel RA (2002) New mode of drug delivery: long term autonomous rhythmic hormone release across a hydrogel membrane. J. Control Release 81:1–6

    Article  CAS  Google Scholar 

  9. Moreland LW (2003) Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthr Res Ther 5:54–67

    Article  CAS  Google Scholar 

  10. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drugdelivery. Drug Discov Today 7:569–579

    Article  CAS  Google Scholar 

  11. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, Lee MY, Hoffman AS, Hahn SK (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 141:2–12

  12. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  13. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  Google Scholar 

  14. Siddarth V, Byrne ME, Peppas NA, Hilt JZ (2005) Applications of biomimetic systems in drug delivery. Expert Opin Drug Deliv 2:1085–1096

    Article  Google Scholar 

  15. Tan H, Chu CR, Payne KA, Marra KG (2010) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Organogenesis 6:173–180

    Article  Google Scholar 

  16. Wang X, He J, Wang Y, Cui FZ (2012) Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus 2:278–291

    Article  Google Scholar 

  17. Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W (2017) A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 155:208–217

    Article  CAS  Google Scholar 

  18. Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25

    Article  CAS  Google Scholar 

  19. Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143

    Article  CAS  Google Scholar 

  20. Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43:1191–1194

    Article  CAS  Google Scholar 

  21. Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol 12:2894–2901

    Article  CAS  Google Scholar 

  22. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702

    Article  CAS  Google Scholar 

  23. Takashima Y, Hatanaka S, Otsubo M, NakDHata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun 3:1270

  24. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343

    Article  CAS  Google Scholar 

  25. Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15:413–420

    Article  Google Scholar 

  26. Vignesh S, Sivashanmugam A, Annapoorna M, Subramania I, Shantikumar VN, Jayakumar R (2018) Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis. Colloids Surf B Biointerfaces 161:129–138

    Article  CAS  Google Scholar 

  27. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Research 5:17014

    Article  CAS  Google Scholar 

  28. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561

    Article  CAS  Google Scholar 

  29. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804

    Article  CAS  Google Scholar 

  30. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents andcommercial products. Eur Polym J 65:252–267

    Article  Google Scholar 

  31. Rodell CB, Kaminski A, Burdick JA (2013) Selective proteolytic degradation of guest-host assembled, injectable hyaluronic acid hydrogels. Biomacromol 14:4125–4134

    Article  CAS  Google Scholar 

  32. Larraneta E, Henry M, Irwin NJ, Trotter J, Perminova AA, Donnelly RF (2018) Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr Polym 181:1194–1205

    Article  CAS  Google Scholar 

  33. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr Polym 92:1262–1279

    Article  CAS  Google Scholar 

  34. Highley CB, Prestwich GD, Burdick JA (2016) Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol 40:35–40

    Article  CAS  Google Scholar 

  35. Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA (2018) Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjug Chem 29:905–913

    Article  CAS  Google Scholar 

  36. Chang R, Wang X, Li X, An H, Qin J (2016) Self-activated healable hydrogels with reversible temperature responsiveness. ACS Appl Mater Inter 8:25544–25551

    Article  CAS  Google Scholar 

  37. An H, Xu K, Chang L, Wang Y, Qin J, Li W (2018) Thermo-responsive self-healable hydrogels with extremely mild base degradability and bio-compatibility. Polymer 147:38–47

    Article  CAS  Google Scholar 

  38. Li LB, Gu J, Zhang J, Xie ZG, Lu YF, Shen LQ, Dong QR, Wang YY (2015) Injectable and biodegradable pH-responsive hydrogels for localized and sustained treatment of human fibrosarcoma. ACS Appl Mater Inter 7:8033–8040

    Article  CAS  Google Scholar 

  39. Chen H, Cheng J, Ran L, Yu K, Lu B, Lan G, Dai F, Lu F (2018) An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohyd Polym 201:522–531

    Article  CAS  Google Scholar 

  40. You B, Li Q, Dong H, Huang T, Cao X, Liao H (2018) Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair. J Mater Sci Technol 34:1016–1025

    Article  CAS  Google Scholar 

  41. Wang X, Chang L, Hu J, Lang X, Fu X, An H, Wang Y, Wang H, Qin J (2017) Self-healable hydrogels with crosslinking induced thermo-responsiveness and regulated properties from water soluble polymer. Polymer 131:202–208

    Article  CAS  Google Scholar 

  42. Wang X, Bian G, Zhang M, Chang L, Li Z, Li X, An H, Qin J, Chang R, Wang H (2017) Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition. Polym Chem 8:2872–2880

    Article  CAS  Google Scholar 

  43. Guan X, Li Y, Jiao Z, Chen J, Guo Z, Tian H, Chen X (2013) A pHsensitive charge-conversion system for doxorubicin delivery. Acta Biomater 9:7672–7678

  44. Zhong C, Bolaky L, Zhang C, Cui N, Du J, Lu S, Lin X (2018) 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG. Mater Sci Eng C 82:244–252

Download references

Funding

This research was funded by the Natural Science Foundation of China (No. 81601588, 82072327); Natural Science Foundation of Hebei Province (B2018201140); State key laboratory of organic–inorganic composites (oic-202001005); Medical Science Foundation of Hebei University(2021X01); Program of Excellent Innovative Talents in Hebei Provincial Institution of Higher Education (SLRC2017048); Hebei University (2017011, 2017014) and Post-graduate’s Innovation Fund Project of Hebei University (hbu2019ss010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 505 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Shen, J., An, H. et al. Hyaluronic acid-based self-repairing hydrogel preparation and 3D cell culture. J Polym Res 29, 170 (2022). https://doi.org/10.1007/s10965-022-03017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03017-2

Keywords

Navigation