Skip to main content
Log in

Crystallization process in the isotactic polypropylene melts with ZrO2∙SiO2 hybrids in quiescent and dynamic conditions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The complex issue of shear-induced nucleation and crystallization, especially in the composites or in presence of nucleating agents, is still not sufficiently understood. Due to growing interest of application of inorganic and organic hybrids in plastics technology and processing, analysis of that phenomenon seems reasonable. This work investigated the crystallization of isotactic polypropylene homopolymer in the presence of three modifiers: ZrO2∙SiO2, ZrO2 SiO2 modified with lanthanum and calcined ZrO2 ∙SiO2 modified with lanthanum. The investigations were performed using WAXS technique, DSC analysis and PLM observations. The PLM analysis were prepared with use of hot-shear stage Linkam CSS 450, allowing for in situ observations of crystals growth in the dynamic conditions. Results indicated that pristine, amorphous ZrO2 ∙SiO2 acts as a nucleating agent for isotactic polypropylene. Proposed explanation was based on the correlation between heteronucleation and surface properties. Moreover, the oriented flow of hybrid powders may induce the formation of row nuclei in appropriate conditions. The occurrence of row nuclei results in formation of fibrilar crystallites. Moreover, the shear flow affects not only on morphology, but also on the crystallization kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Varga J (1992) J Mat Sci 27:2557–2579

    Article  CAS  Google Scholar 

  2. Janeschitz-Kriegl H, Ratajski E (2014) Polym Bull 71:1197–1203

    Article  CAS  Google Scholar 

  3. Janeschitz-Kriegl H (2017) Int Polym Process 32:227–236

    Article  CAS  Google Scholar 

  4. Nogales A, Hsiao BS, Somani RH et al (2001) Polymer 42:5247–5256

    Article  CAS  Google Scholar 

  5. Somani RH, Yang L, Hsiao BS (2002) Phys A: Stat Mech Appl 304:145–157

    Article  CAS  Google Scholar 

  6. Yang L, Somani RH, Sics I et al (2006) J Condens Matter Phys 18:S2421–S2436

    Article  CAS  Google Scholar 

  7. Somani RH, Yang L, Hsiao BS (2004) Polymer 47:5657–5668

    Article  Google Scholar 

  8. Keum JK, Mao YM, Zuo F et al (2013) Polymer 54:1425–1431

    Article  CAS  Google Scholar 

  9. Zhang CG, Hu HQ, Wang DJ et al (2005) Polymer 46:8157–8161

    Article  CAS  Google Scholar 

  10. Zhang ZN, Yu FY, Zhang HB et al (2015) Acta Polym Sin 2015:396–402

    Google Scholar 

  11. Grzabka-Zasadzinska A, Klapiszewski L, Jesionowski T et al (2020) Molecules 25

  12. Naiki M, Fukui Y, Matsumura T et al (2001) J Appl Polym Sci 79:1693–1703

    Article  CAS  Google Scholar 

  13. Liu Q, Li HH, Qiu ZB et al (2012) Polym Int 61:1417–1424

    Article  CAS  Google Scholar 

  14. Li MJ, Qi Y, Zhao ZG et al (2016) Polym Adv Technol 27:494–503

    Article  CAS  Google Scholar 

  15. Zhang CG, Hu HQ, Wang XH et al (2007) Polymer 48:1105–1115

    Article  CAS  Google Scholar 

  16. Garbarczyk J, Paukszta D (1985) Colloid Polym Sci 263:985–990

    Article  CAS  Google Scholar 

  17. Borysiak S, Grzabka-Zasadzinska A, Odalanowska M et al (2018) Cellulose 25:4639–4652

    Article  CAS  Google Scholar 

  18. Reynolds N, Awang-Ngah S, Williams G, Hughes DJ (2020) Appl Compos Mater 27:107–115

  19. Feng JC, Chen MC, Huang ZT et al (2002) J Appl Polym Sci 85:1742–1748

    Article  CAS  Google Scholar 

  20. Guo XJ, Zhao SC, Xin Z (2009) Asia-Pac J Chem Eng 4:628–634

    Article  CAS  Google Scholar 

  21. Lin Y, Chen HB, Chan CM et al (2011) J Colloid Interface Sci 354:570–576

    Article  CAS  Google Scholar 

  22. Gahleitner M, Grein C, Kheirandish S et al (2011) Int Polym Process 26:2–20

    Article  CAS  Google Scholar 

  23. Grzabka-Zasadzinska A, Klapiszewski L, Bula K et al (2016) J Therm Anal Calorim 126:263–275

    Article  CAS  Google Scholar 

  24. Bednarek WH, Ciesielczyk F, Odalanowska M et al (2020) Polym Eng Sci 60:1856–1865

    Article  CAS  Google Scholar 

  25. Patil N, Invigorito C, Gahleitner M et al (2013) Polymer 54:5883–5891

    Article  CAS  Google Scholar 

  26. Zhao J, Zhang JH, Jing MF et al (2019) J Polym Sci B Polym Phys 57:368–377

    Article  CAS  Google Scholar 

  27. Zhao J, Lu C, Guo S et al (2018) Mater Des 150:40–48

    Article  CAS  Google Scholar 

  28. Zhang B, Chen JB, Ji FF et al (2012) Polymer 53:1791–1800

    Article  CAS  Google Scholar 

  29. Sun TC, Chen FH, Dong X et al (2009) Polymer 50:2465–2471

    Article  CAS  Google Scholar 

  30. Pantani R, Nappo V, De Santis F et al (2014) Fibrillar. Macromol Mater Eng 299:1465–1473

    Article  CAS  Google Scholar 

  31. Marciniak H, Diduszko R, Kozak M (2016) XRAYAN - X-ray Phase Analysis. Warsaw, Poland: KOMA

  32. Ciesielczyk F, Szczekocka W, Siwinska-Stefanska K et al (2017) Open Chem 15:7–18

    Article  CAS  Google Scholar 

  33. Olmos D, Dominguez C, Castrillo PD et al (2009) Polymer 50:1732–1742

    Article  CAS  Google Scholar 

  34. Pi L, Nie M, Wang Q (2019) J Vinyl Addit Technol 25:E195–E202

    Article  CAS  Google Scholar 

  35. Luo SS, Zheng Y, Zheng Z et al (2019) 3 Chem. Eng Sci 55:710–720

    Google Scholar 

  36. Feng JC, Chen MC (2003) Polym Int 52:42–45

    Article  CAS  Google Scholar 

  37. Fiorentino B, Fulchiron R, Duchet-Rumeau J et al (2013) Polymer 54:2764–2775

    Article  CAS  Google Scholar 

  38. Szkudlarek E, Piorkowska E, Boyer SAE et al (2013) Eur Polym J 49:2109–2119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Jacob Halajczak.

Funding

This work was funded by the Polish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Paukszta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 495 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednarek, W.H., Ciesielczyk, F., Odalanowska, M. et al. Crystallization process in the isotactic polypropylene melts with ZrO2∙SiO2 hybrids in quiescent and dynamic conditions. J Polym Res 29, 171 (2022). https://doi.org/10.1007/s10965-022-03015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03015-4

Keywords

Navigation