Skip to main content
Log in

Influence of acrylonitrile butadiene elastomer as polymeric co-agent for crosslinking poly(vinyl chloride) by gamma radiation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Plasticized filled poly(vinyl chloride) (PVC) blends incorporating acrylonitrile-butadiene rubber (NBR) as an elastomeric crosslinking co-agent were subjected to gamma radiation by a Co60 source for total doses 25 to 100 kGy. Changes in total insoluble contents, physicomechanical properties (before and after thermal aging), morphology, spectroscopy, and dynamic mechanical behavior as a function of NBR loading and total dose were investigated. An increase in total insoluble contents with both NBR loading and total dose indicates that within the parameters of the study, the blends underwent crosslinking as the predominant effect with an increase of hardness. Unaged mechanical properties (tensile strength, Young’s modulus, and elongation at break) of the blends were significantly modified. These same properties, after aging at 90 °C, 168 h are again modified due to further crosslinking reactions above the glass transition temperatures. The obtained results indicate that there exists a loading range for NBR for which an optimal combination of room temperature and aged mechanical properties may be obtained. Abrasion resistance of the blends improves due to the formation of chemically bonded networks. The mechanism of the crosslinking reaction was elucidated by Fourier transform infrared spectroscopy. Electron scanning microscopy shows single-phase blend morphologies for all blends and reveals a reduction in matrix ductility on crosslinking. Dynamic mechanical analysis conducted to study the change in loss tangent, storage modulus, and loss modulus at 100 kGy total dose shows an increase in these parameters and that the modification of physicomechanical properties are due to both crosslinking as well as enhanced interaction between PVC and NBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All of the data in this manuscript will be made accessible for reference after the paper has been published.

References

  1. PVC consumption volume worldwide 2016–2022 (2018) https://www.statista.com/statistics/887934/polyvinyl-chloride-consumptionvolumeworldwide/#statisticContainer. Accessed: 14 Jan 2022

  2. Wang CB, Cooper SL (1983) Morphology and properties of poly (vinyl chloride)–poly (butadiene-co-acrylonitrile) blends. J Polym Sci B Polym Phys 21(1):11–27

    Article  CAS  Google Scholar 

  3. Watanabe N (1990) In De SK, Bhowmick AK (eds.) Thermoplastic elastomers from rubber-plastic blends, De SK, Bhowmick AK. eds., Ellis Horwood, London, 198

  4. Nakajima N, Liu JL (1992) The effect of gel on the deformational behavior of polyvinylchloride (PVC) and nitrile rubber (NBR) blends. Rubber Chem Technol 65(2):453–474

    Article  CAS  Google Scholar 

  5. Manoj NR, De PP (1998) An investigation of the chemical interactions in blends of poly (vinyl chloride) and nitrile rubber during processing. Polym 39(3):733–741

    Article  CAS  Google Scholar 

  6. Hafezi M, Khorasani SN, Ziaei F, Azim HR (2007) Comparison of physicomechanical properties of NBR—PVC blend cured by sulfur and electron beam. J Elastomers Plast 39(2):151–163

    Article  CAS  Google Scholar 

  7. Ciesielski A (1999) An introduction to rubber technology, 1st edn. Smithers Rapra Publishing, UK

    Google Scholar 

  8. Moghri M, Zanjanijam AR, Seifi L, Ramezani M (2017) An investigation on rheological behavior of the PVC/NBR/nanoclay nanocomposites by torque rheometry: the effects of formulation variables using response surface approach. J Inorg Organomet Polym Mater 27(S1):264–273

    Article  CAS  Google Scholar 

  9. Luo P, Wen SB, Prakashan K, Zhang ZX, Sinha TK, Kim JK (2019) Physicomechanical properties of NBR/CPVC blend vulcanizates and foams. J Vinyl Addit Technol 25(2):182–188

    Article  CAS  Google Scholar 

  10. Zakrzewski GA (1973) Investigation of the compatibility of butadiene—acrylonitrile copolymers with poly (vinyl chloride). Polym 14(8):347–351

    Article  CAS  Google Scholar 

  11. Sen AK, Mukherjee GS (1993) Studies on the thermodynamic compatibility of blends of poly (vinyl chloride) and nitrile rubber. Polym 34(11):2386–2391

    Article  CAS  Google Scholar 

  12. Kwak SY, Nakajima N (1996) Monitoring of homogenization and analysis of nanoscale structure in abutadiene−acrylonitrile copolymer/poly(vinyl chloride) blend. Macromolecules 29(16):5446–5452

    Article  CAS  Google Scholar 

  13. Charlesby A, Pinner S (1959) Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proceedings of the Royal Society of London. Series A. Mathematic Physic Sci 249(1258):367–386

  14. Miller AA (1959) Radiation chemistry of polyvinyl chloride. J Phys Chem 63(10):1755–1759

    Article  CAS  Google Scholar 

  15. Vesely D, Finch DS (1987) Chemical changes in electron-beam irradiated polymers. Ultramicroscopy 23(3–4):29–337

    Google Scholar 

  16. Henglein AJ, Spinks JWT, Woods RJ (1991) An Introduction to Radiation Chemistry. John-Wiley and Sons Inc, New York

    Google Scholar 

  17. Behjat A, Gheysari D (2008) 10 MeV electron beam cross-linking of plasticized PVC in presence of EHPTM and TAC additives. Nukleonika 53:57–62

    CAS  Google Scholar 

  18. Facio AC, Benavides RP, Uribe MMR (2007) Electron beam crosslinking of non-lead PVC formulations. Radiat Phys Chem 76(11–12):1720–1723

    Article  Google Scholar 

  19. Garcia-Castaneda C, Benavides R, Martínez-Pardo ME, Uribe RM, Carrasco-Ábrego H, Martínez G (2010) Crosslinking of rigid PVC by ionizing radiation to improve its thermal properties. Radiat Phys Chem 79(3):335–338

    Article  CAS  Google Scholar 

  20. Ranogajec F, Mlinac Misak M, Hell Z (2008) Improvement of the polymer properties by radiation grafting and crosslinking. Polimeri: časopis za Plastiku i Gumu 29(4):236–243

  21. Salem EF, Mostafa N, Hassan MM, Mohsen M (2009) Effects induced by gamma irradiation on free- volumes, mechanical, and thermal properties of flame-and non flame-retardant polyvinylchloride. J Appl Polym Sci 113(1):199–206

    Article  CAS  Google Scholar 

  22. Yasin T, Ahmed S, Ahmed M, Yoshii F (2005) Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile–butadiene rubber under electron-beam irradiation. Radiat Phys Chem 73(3):155–158

    Article  CAS  Google Scholar 

  23. Mammadov S, Akhundzada H, Khankishiyeva R, Mammadov J, Mammadova G, Ismayilova P, Mirzayev M (2020) Effect Of Gamma Irradiation On The Crosslinking Process Of Nitrile-Butadiene Rubber With Triazine And Maleic Compounds. J Optoelect Biomed Mater 12(3):81–87

    Google Scholar 

  24. Mammadov SM (2016) Fundamentals of technology of synthesis, processing and vulcanization of NBR. Academic Publishing, Lap Lambert, p 351

    Google Scholar 

  25. Yasin T, Ahmed S, Yoshii F, Makuuchi K (2002) Radiation vulcanization of acrylonitrile–butadiene rubber with polyfunctional monomers. React Funct Polym 53(2):173–181

    Article  CAS  Google Scholar 

  26. El-Nemr KF (2011) Effect of different curing systems on the mechanical and physico-chemical properties of acrylonitrile butadiene rubber vulcanizates. Mater Des 32(6):3361–3369

    Article  CAS  Google Scholar 

  27. Mammadov SM, Rzayeva SA, Garibov AA, Mehdiyeva RN, Mammadov JS (2013) Radiation-chemical structure of acrylo-nitrile butadiene rubber with copolymer vinyl chloride and vinyl acetate. Am J Polym Sci 3(4):76–82

    Google Scholar 

  28. Ratnam CT, Kamaruddin S, Abdullah Z (2011) Irradiation modification of PVC/NBR blend. Polym-Plast Technol Eng 50(8):833–838

    Article  CAS  Google Scholar 

  29. Atef S, El-Nashar DE, Ashour AH, El-Fiki S, El-Kameesy SU, Medhat M (2020) Effect of gamma irradiation and lead content on the physical and shielding properties of PVC/NBR polymer blends. Polym Bull 77(10):5423–5438

    Article  CAS  Google Scholar 

  30. EL-Sayed ESF, Elnaggar MY, Hassan MM (2018) Thermo-mechanical Properties of Polyvinyl Chloride/vulcanized Nitrile Butadiene Rubber Blends Cured by Gamma Irradiation Egyptian J Rad Sci App 31 1 1 11

  31. Youssef HA, Shaltout NA, Nemer EIKF, Miligy EIAA (2009) Effect of short PET fiber and electron beam irradiation on the properties of acrylonitrile butadiene rubber poly (vinyl chloride)(NBR-PVC) blend. J Radiat Res Appl Sci 2(2):277–293

    Google Scholar 

  32. El-Salmawi KM, Abu-Zied MM, Ibrahim SM, Zahran AH (2005) Characterization of gamma and electron beam irradiated poly vinyl chloride/nitrile butadiene (PVC/NBR) polymer blends. Proc 8th Arab Internatl Conf Polym Sci Technol (ESPST) Egypt 1051

  33. Li JX, Chan CM (2001) Effect of the size of the dispersed NBR phase in PVC/NBR blends on the stability of PVC to electron irradiation. Polym 42(16):6833–6839

    Article  CAS  Google Scholar 

  34. Young-chang N (1992) PVC, radiation crosslinking and heat shrink characteristics. J Korean Ind Eng 3(2):341–348

    Google Scholar 

  35. Pyun H-C, Young-chang N (1991) Radiation crosslinking of PVC/NBR blends Polymer (Korea) 15(4):425–430

    CAS  Google Scholar 

  36. Manoj NR, De PP, De SK (1993) Self-crosslinkable plastic-rubber blend system based on poly (vinyl chloride) and acrylonitrile-co-butadiene rubber. J Appl Polym Sci 49(1):133–142

    Article  CAS  Google Scholar 

  37. Wang S, Zhang Y, Zhang Y, Zhang C, Li E (2004) Crosslinking of polyvinyl chloride by electron beamirradiation in the presence of ethylene–vinyl acetate copolymer. J Appl Polym Sci 91(3):1571–1575

    Article  CAS  Google Scholar 

  38. Stelescu M D (2013) Polymer composites based on plasticized PVC and vulcanized nitrile rubber waste powder for irrigation pipes. Internatl Scholar Res Notices, ISRN Mater Sci

  39. Roff WJ, Scott JR (2013) Fibres, films, plastics and rubbers: a handbook of common polymers. Elsevier Science, Netherlands

    Google Scholar 

  40. Zhang ZX, Wang C, Wang S, Wen S, Phule AD (2020) A lightweight, thermal insulation and excellent weatherability foam crosslinked by electron beam irradiation. Rad Phy Chem 173, 108890

  41. Majumder PS, Bhowmick AK (1998) Surface-and bulk-properties of EPDM rubber modified by electron beam irradiation. Radiat Phys Chem 53(1):63–78

    Article  CAS  Google Scholar 

  42. Vijayabaskar V, Tikku VK, Bhowmick AK (2006) Electron beam modification and crosslinking: Influence of nitrile and carboxyl contents and level of unsaturation on structure and properties of nitrile rubber. Radiat Phys Chem 75(7):779–792

    Article  CAS  Google Scholar 

  43. Craver C, Carraher C (2000) Applied polymer science: 21st century. Elsevier Science, Netherlands

    Google Scholar 

  44. Lopitaux G, Coqueret X, Boursereau F, Larnac G (2003) Immediate and long-term effects of electron beam irradiation on nitrile-butadiene rubber. Nucl Instrum Methods Phys Res B 208:500–504

    Article  CAS  Google Scholar 

  45. Mousa A, Ishiaku US, Mohd Ishak ZA (2005) The effect of prolonged thermo-oxidative ageing on the mechanical properties of dynamically vulcanized poly(vinyl chloride)/nitrile butadiene rubber thermoplastic elastomers. Int J Polym Mater 55(4):235–253

    Article  Google Scholar 

  46. Lee KS, Whelan A (2012) Developments in rubber technology - 4. Springer Science & Business Media, Netherlands

    Google Scholar 

  47. Grassie N (1956) Chemistry of high polymer degradation process. Butterworths Scientific, London

    Google Scholar 

  48. Ito M, Nagai K (2007) Analysis of degradation mechanism of plasticized PVC under artificial aging conditions. Polym Degrad Stab 92(2):260–270

    Article  CAS  Google Scholar 

  49. Ishiaku US, Lim FS, Ishak ZM, Perera MS (1999) Mechanical properties and thermooxidative aging of a ternary blend, PVC/ENR/NBR, compared with the binary blends of PVC. Polym Plast Technol Eng 38(5):939–954

    Article  CAS  Google Scholar 

  50. Arayapranee W, Rempel GL (2008) A comparison of the properties of rice husk ash, silica, and calcium carbonate filled 75: 25 NR/EPDM blends. J Appl Polym Sci 110(2):1165–1174

    Article  CAS  Google Scholar 

  51. Tan J, Mei Ding Y, Tao He X, Liu Y, An Y, Min Yang W (2008) Abrasion resistance of thermoplastic polyurethane materials blended with ethylene–propylene–diene monomer rubber. J Appl Polym Sci 110(3):1851–1857

    Article  CAS  Google Scholar 

  52. Ratner SB, Farberova II, Radyukevich OV, Lur’e EG (1967) In: James DI (ed) Abrasion of rubber. MacLaren, London, pp 145–154

    Google Scholar 

  53. Thomas S (1987) Scanning electron microscopy studies on wear properties of blends of plasticized poly(vinyl chloride) and thermoplastic copolyester elastomer. Wear 116(2):201–209

    Article  CAS  Google Scholar 

  54. Lee EH, Rao GR, Lewis MB, Mansur LK (1994) Effects of electronic and recoil processes in polymers during ion implantation. J Mater Res 9(4):1043–1050

    Article  CAS  Google Scholar 

  55. Krongauz VV, Lee YP, Bourassa A (2011) Kinetics of thermal degradation of poly(vinyl chloride). JTherm Anal Calorim 106:139–149

    Article  CAS  Google Scholar 

  56. Manoj NR, De SK, De PP (1993) Thermally induced crosslinking in blends of poly (Vinyl chloride) and hydrogenated acrylonitrile—butadiene rubber. Rubber Chem Technol 66(4):550–558

    Article  CAS  Google Scholar 

  57. Cornes PL, Haward RN (1974) Ductile fracture of rigid poly (vinyl chloride). Polymer 15(3):149–156

    Article  CAS  Google Scholar 

  58. Bikiaris D, Prinos J, Botev M, Betchev C, Panayiotou C (2004) Blends of polymers with similar glass transition temperatures: A DMTA and DSC study. J Appl Polym Sci 93(2):726–735

    Article  CAS  Google Scholar 

  59. Sin MC, Tan IKP, Annuar MSM, Gan SN (2014) Viscoelastic, spectroscopic, and microscopic characterization of novel bio-based plasticized poly(vinyl chloride) compound. Int J Polym Sci

  60. Gao J, Yang J, Du Y, Liu X (2013) Dynamic rheological behavior and mechanical properties of PVC/ACS blends. Iran Polym J 22(4):285–292

    Article  CAS  Google Scholar 

  61. Vijayabaskar V, Bhowmick AK (2005) Dynamic mechanical analysis of electron beam irradiated sulphur vulcanized nitrile rubber network—some unique features. J Mater Sci 40(11):2823–2831

    Article  CAS  Google Scholar 

  62. Ratnam CT, Nasir M, Baharin A, Zaman K (2001) Electron-beam irradiation of poly (vinyl chloride)/epoxidized natural rubber blends in presence of trimethylolpropane triacrylate. J Appl Polym Sci 81(8):1926–1935

    Article  CAS  Google Scholar 

  63. Zurina M, Ismail H, Ratnam CT (2006) Characterization of irradiation-induced crosslink of epoxidized natural rubber/ethylene vinyl acetate (ENR-50/EVA) blend. Polym Degrad Stab 91(11):2723–2730

    Article  CAS  Google Scholar 

  64. Matsuo M, Nozaki C, Jyo Y (1969) Fine structures and fracture processes in plastic/rubber two-phase polymer systems. I. Observation of fine structures under the electron microscope. Polym Eng Sci 9:197–205

    Article  CAS  Google Scholar 

  65. Perera MS, Ishiaku US, Ishak ZM (2001) Characterisation of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR. Eur Polym J 37(1):167–178

    Article  Google Scholar 

  66. Sethi M, Gupta NK, Srivastava AK (2002) Dynamic mechanical analysis of polyethylene and ethylene vinylacetate copolymer blends irradia

Download references

Acknowledgements

The authors would like to thank Shriram Institute for Industrial Research, Delhi for extending facilities of the Applied Radiation Center for undertaking irradiation experiments. The kind help of Mr. Anand Gupta in SEM characterization is duly acknowledged.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NKG: Conceived and designed the study, its methodology and experimental validation, irradiation, writing-review & editing; SG: Performed the experiments and wrote the draft of the paper; AT: Supported the investigation and review of the manuscript. All authors reviewed, edited, and approved the manuscript.

Corresponding author

Correspondence to Neeraj K. Gupta.

Ethics declarations

Conflicts of interest

The authors declare that there is no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 398 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N.K., Gupta, S. & Tedesse, A. Influence of acrylonitrile butadiene elastomer as polymeric co-agent for crosslinking poly(vinyl chloride) by gamma radiation. J Polym Res 29, 119 (2022). https://doi.org/10.1007/s10965-022-02974-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02974-y

Keywords

Navigation