Skip to main content
Log in

PVDF reinforced with core–shell structured Mo@MoO3 fillers: effects of semi-conductor MoO3 interlayer on dielectric properties of composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An insulating interlayer between polymer and conductive particles is crucial for suppressing the dissipation factors (tanδ) of composites. In order to restrain the large tanδ of molybdenum (Mo) particles/poly(vinylidene fluoride) (PVDF) composites while still holding a high dielectric permittivity (εr) close to the filler’ percolation threshold (fc), Mo particles were first encapsulated with a layer of molybdenum trioxide (MoO3) shell through a facile direct thermal oxidation method at 600 °C, and then were compounded into PVDF. The influences of the MoO3 coating on dielectric properties of the Mo/PVDF composites were investigated in terms of filler loading, the shell thickness and frequency. The results suggest that both the calcination time and the filler loading remarkably affect the dielectric properties of the composites. The Mo@MoO3/PVDF composites exhibit high εr but much low tanδ compared with raw Mo/PVDF because the semi-conductor MoO3 shell effectively prevents the raw Mo particles from connecting with each other thereby leading to enormously suppressed loss and leakage current even at high filler loadings > fc. With further increasing the interlayer thickness both the dielectric loss and conductivity decline accordingly thanks to the gradually pronounced suppression effect. The resulting Mo@MoO3/PVDF composites possessing the high εr but low tanδ could be the ideal dielectric materials for potential applications in microelectronics and electrical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhong SL, Dang ZM, Zhou WY, Cai HW (2018) Past and future on nanodielectrics Nanodielectrics 1:41–47

    Google Scholar 

  2. Zhou WY, Chen QG, Sui XZ, Dong LN, Wang ZJ (2015) Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Compos A Appl Sci Manuf 71:184–191

    Article  CAS  Google Scholar 

  3. Li B, Yuan MX, Zhang SH, Rajagopalan R (2018) Abnormal high voltage resistivity of polyvinylidene fluoride and implications for applications in high energy density film capacitors. Appl Phys Lett 113:193903

  4. Wang P, Zhang XM, Duan W, Teng W, Liu YB, Xie Q (2021) Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin J Chem 39:1153–1158

    Article  CAS  Google Scholar 

  5. Ren JH, Wang ZY, Xu P, Wang C, Gao F, Zhao DC, Liu SP, Yang H, Wang D, Niu CM, Zhu YS, Wu YT, Liu X, Wang ZL, Zhang Y (2022) Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Letters 14:5

    Article  CAS  Google Scholar 

  6. Li B, Xidas PI, Manias E (2018) High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Appl Nano Mater 1:3520–3530

    Article  CAS  Google Scholar 

  7. Zhang Y, Zhang CH, Feng Y, Zhang TD, Chen QG, Chi QG, Liu LZ, Li GF, Cui Y, Wang X, Dang ZM, Lei QQ (2019) Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56:138–150

    Article  CAS  Google Scholar 

  8. Zhou WY, Li X, Zhang F, Zhang CH, Li Z, Chen FX, Cai HW, Liu XR, Chen QG, Dang ZM (2020) Concurrently enhanced dielectric properties and thermal conductivity in PVDF composites with core-shell structured β-SiCw@SiO2 whiskers. Compos A 137:106021

  9. Wang ZD, Wang XZ, Wang SL, He JY, Zhang T, Wang J, Wu GL (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomaterials 11:1898–1898

    Article  CAS  Google Scholar 

  10. Zheng MS, Zhang C, Yang Y, Xing ZL, Chen X, Zhong SL, Dang ZM (2020) Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectrics 3(3):94–98

    Article  Google Scholar 

  11. Zhou WY, Zhang F, Yuan MX, Li B, Peng JD, Lv YQ, Cai HW, Liu XR, Chen QG, Dang ZM (2019) Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles. J Mater Sci: Mater Electron 30:18350–18361

    CAS  Google Scholar 

  12. Lu X, Zou XW, Shen JL, Zhang L, Jin L, Cheng ZY (2020) High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 70:104551

  13. Lu J, Li WL, Yu F, Zhang YL, Jun H, Fei WD (2019) PVDF-based composites filled with PZT@Ag core-shell structured particles for enhanced dielectric properties. Mod Phys Lett B 33:1950139

    Google Scholar 

  14. Thakur PVK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  Google Scholar 

  15. He DL, Wang Y, Song SL, Liu S, Deng Y (2017) Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly (vinylidene fluoride)-Based Composites Enabled by SiC@SiO2 Core-Shell Whiskers Alignment. ACS Appl Mater Interfaces 9:44839–44846

    Article  CAS  Google Scholar 

  16. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST (2012) Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Progress Mater Sci 57:660–723

    Article  CAS  Google Scholar 

  17. Wang TX, Liang GZ, Yuan L, Gu A (2014) Unique hybridized graphene and its high dielectric constant composites with enhanced frequency stability, low dielectric loss and percolation threshold. Carbon 77:920–932

    Article  CAS  Google Scholar 

  18. Niu YJ, Bai YY, Yu K, He L, Xiang F, Wang H (2013) Fabrication, structure, and property of epoxy-based composites with metal-insulator core-shell structure fillers. J Mater Res 28:2644–2649

    Article  CAS  Google Scholar 

  19. Wang P, Wang S, Zhang XM, Wang HQ, Duan W, Han HL, Fan XL (2020) Rational construction of CoO/CoF2 coating on burnt-pot inspired 2D CNs as the battery-like electrode for supercapacitors. Alloy Compd 819:153374

  20. Song PA, Liu LN, Huang GB, Yu YM, Guo QP (2013) Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology 24:505706

  21. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    Article  CAS  Google Scholar 

  22. Jiang YC, Zhang Z, Zhou Z, Yang H, Zhang QL (2019) Enhanced dielectric performance of P(VDF-HFP) composites with satellite-core-structured Fe2O3@BaTiO3 nanofillers. Polymers 10(11):1541–1541

    Article  Google Scholar 

  23. Zha JW, Yao SC, Qiu Y, Zheng SM, Dang ZM (2019) Enhanced dielectric properties and energy storage of the sandwich-structured poly (vinylidene fluoride-co-hexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres. IET Nanodielectrics 2:103–108

    Article  Google Scholar 

  24. Zhang QP, Zhu WF, Liang DM, Wu XL, Chen RC, Sun N, Li YT, Zhou YL (2019) Core-shell structured CaCO3@CNF for enhanced dielectric properties of polymer nanocomposites. Appl Surf Sci 487:77–81

    Article  CAS  Google Scholar 

  25. Zhou WY, Li T, Yuan MX, Li B, Zhong SL, Li Z, Liu XR, Zhou JJ, Wang Y, Cai HW, Dang ZM (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Materials 42:1–11

    Article  Google Scholar 

  26. Zhou WY (2011) Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. Thermochim Acta 512:183–188

    Article  CAS  Google Scholar 

  27. Li T, Zhou WY, Li Y, Cao D, Wang Y, Cao GZ, Liu XR, Cai HW, Dang ZM (2021) Synergy improvement of dielectric properties and thermal conductivity in PVDF composites with core-shell structured Ni@SiO2. J Mater Sci: Mater Electron 32:4076–4089

    CAS  Google Scholar 

  28. Wu GL, Cheng YH, Ren YY, Wang YQ, Wang ZD, Wu HJ (2015) Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J Alloy Compd 652:346–350

    Article  CAS  Google Scholar 

  29. Liu SH, Wang J, Hao HS, Zhao LM, Zhai JW (2018) Discharged energy density and efficiency of nanocomposites based on poly(vinylidene fluoride) and core-shell structured BaTiO3@Al2O3 nanoparticles. Ceram Int 44:22850–22855

    Article  CAS  Google Scholar 

  30. Li T, Zhou WY, Li Y, Cao D, Wu HJ, Liu DF, Wang Y, Cao GZ, Dang ZM (2021) Concurrently improving dielectric properties and thermal conductivity of Ni/PVDF composites by constructing NiO shell as an interlayer. J Mater Sci: Mater Electron 32:14764–14779

    CAS  Google Scholar 

  31. Wang L, Luo H, Zhou XF, Wei AQ, Zhou KC, Chen Z, Zhang D (2018) Enhanced permittivity and energy density of P(VDF-HFP)-based capacitor using core-shell structured BaTiO3@TiO2 fillers. Ionics 24(12):3975–3982

    Article  CAS  Google Scholar 

  32. Zhou WY, Li X, Jiang LY, Peng JD, Gong Y, Liu XR, Cai HW, Wang GH, Chen QG (2017) Towards suppressing loss tangent: Effect of SiO2 coating layer on dielectric properties of core-shell structure flaky Cu reinforced PVDF composites. J Alloy Compd 710:47–56

    Article  CAS  Google Scholar 

  33. Dai JH, Meng SL, YANG CT, Lv WZ, Chen XZ, Yin YH, Liang F, (2021) Effect of nano silver modification on the dielectric properties of Ag@TiO2/PVDF Composites. Journal of Wuhan University of Technology (Materials Science) 36(03):303–310

    Article  CAS  Google Scholar 

  34. Zhou WY, Gong Y, Tu LT, Li X, Zhao W, Cai JT, Zhang YT, Zhou AN (2017) Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly (vinylidene fluoride) composites. Alloy Compd 693:1–8

    Article  CAS  Google Scholar 

  35. Luo H, Ma C, Zhou XF, Chen S, Zhang D (2017) Interfacial design in dielectric nanocomposite using liquid-crystalline polymers. Macromolecules 50(13):5132–5137

    Article  CAS  Google Scholar 

  36. Zhou WY, Kou YJ, Yuan MX, Li B, Cai HW, Li Z, Chen FX, Liu XR, Wang GH, Chen QG, Dang ZM (2019) Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Comp Sci Technol 181:107686

  37. Luo H, Zhou XF, Ellingford C, Zhang Y, Sheng C, Zhou KC, Zhang D, Bowen CR, Wan CY (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48(16):4424–4465

    Article  CAS  Google Scholar 

  38. Li GC, Zhou XG, Wei YH, Hao CC, Lei QQ (2019) Effect of BN nanosheet concentration on space charge characteristics in XLPE/BNNS nanocomposites. Maters Res Express 6(11):115080

  39. Li B, Xidas PI, Triantafyllidis KS, Manias, E (2017) Effect of crystal orientation and nanofiller alignment on dielectric breakdown of polyethylene/montmorillonite nanocomposites. Appl Phys Lett 111(8):082906

  40. Li B, Salcedo-Galan F, Xidas PI, Manias E (2018) Improving electrical breakdown strength of polymer nanocomposites by tailoring hybrid-filler structure for high-voltage dielectric applications. ACS Applied Nano Materials 1(9):4401–4407

    Article  CAS  Google Scholar 

  41. Feng Y, Zhou YH, Zhang TD, Zhang CH, Zhang YQ, Zhang Y, Chen QG, Chi QG (2020) Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Materials 25:180–192

    Article  Google Scholar 

  42. Lu X, Zhang L, Tong Y, Cheng ZY (2019) BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Compos B Eng 168:34–43

    Article  CAS  Google Scholar 

  43. Ren JW, Li QH, Yan, L, Jia LC, Huang XL, Zhao LH, Ran QC, Fu ML (2020) Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Maters Design 191:108663

  44. Lu X, Deng W, Wei JD, Wan YH, Zhang JJ, Zhang L, Jin L, Cheng ZY (2021) Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Comp Part B: Eng 224:109195

  45. Zhao LH, Yan L, Wei CM, Li QH, Huang XL, Wang ZL, Fu ML, Ren JW (2020) Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. The Journal of Physical Chemistry C 124(23):12723–12733

    Article  CAS  Google Scholar 

  46. Lu X, Deng W, Wei JD, Zhu YS, Ren PR, Wan YH, Yan FX, Jin L, Zhang L, Cheng ZY (2021) Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J Mater Sci 56(36):19983–19995

    Article  CAS  Google Scholar 

  47. Jia LC, Jin YF, Ren JW, Zhao LH, Yan DX, Li ZM (2021) Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. Journal of Materials Chemistry C 9(8):2904–2911

    Article  CAS  Google Scholar 

  48. Zhao LH, Liao CJ, Liu Y, Huang XL, Ning WJ, Wang Z, Jia LCA, Ren JW (2021) A combination of aramid nanofiber and silver nanoparticle decorated boron nitride for the preparation of a composite film with superior thermally conductive performance. Compos Interfaces. https://doi.org/10.1080/09276440.2021.1950378

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 51937007, 51903207), PhD early development program of Xi'an University of science and technology (2019QDJ010), and acknowledge the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Zhou or Ying Li.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhou, W., Cao, D. et al. PVDF reinforced with core–shell structured Mo@MoO3 fillers: effects of semi-conductor MoO3 interlayer on dielectric properties of composites. J Polym Res 29, 72 (2022). https://doi.org/10.1007/s10965-022-02925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02925-7

Keywords

Navigation