Skip to main content
Log in

Multistage drawing scCO2-assisted ultrahigh molecular weight polyethylene/activated nanocarbon fibers and their performance

  • Letter to the Editor
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Extremely large specific surface area (~ 2400 m2/g) of modified activated nanocarbon (MANC) particles were prepared from bamboo activated carbon particles. The UHMWPE/MANC fibers gelated with scCO2-assistance were drawn to a remarkably large achievable draw ratio, orientation factor and ultimate tensile tenacity by applying a 5-stage drawing technique. The ultimate tensile tenacity acquired for 5-stage drawn scCO2UHMWPE/MANC fiber approached 164 g/d, which is ~ 370%, ~ 60% and ~ 30% higher than those of the proper one-stage drawn UHMWPE, UHMWPE/MANC and scCO2UHMWPE/MANC fibers, respectively. Considerably reduced dynamic transition temperature and lamellar thickness values were evaluated for the scCO2UHMWPE/MANC fibers compared with the equivalent UHMWPE and UHMWPE/MANC as-spun fibers gelated in nitrogen atmosphere, respectively. Probable reasons accounting for these considerably improved ultimate tensile tenacities of 5-stage drawn scCO2UHMWPE/MANC fibers and lower dynamic transition temperatures of their as-spun fibers are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

Data will be made available on request.

References

  1. Xiao M, Yu J, Zhu J, Lei C, Hu Z (2011) Effect of UHMWPE concentration on the extracting, drawing, and crystallizing properties of gel fibers. J Mater Sci 46(17):5690–5697

    Article  CAS  Google Scholar 

  2. Hsieh YL, Hu XP (1997) Structural transformation of ultra-high modulus and molecular weight polyethylene fibers by high-temperature wide-angle X-ray diffraction. JW A 35(4):623–630

    CAS  Google Scholar 

  3. Chen M, Jiang B, Wang J, Yang Y, Gong Q (2015) Investigation of the extraction process in gel-spinning technology for ultrahigh-molecular-weight polyethylene fibers by low-field nuclear magnetic resonance. J Appl Polym Sci 132(23):309–318

    Article  Google Scholar 

  4. Ruan LS, Gao P, Yang GX (2003) Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44(19):5643–5654

    Article  CAS  Google Scholar 

  5. Pruitt L, Bailey L (1998) Factors affecting the near-threshold fatigue behavior of surgical grade ultrahigh molecular weight polyethylene. Polymer 39(8):1545–1553

    Article  CAS  Google Scholar 

  6. Phillips RA (1998) Morphology and melting behavior of nascent ultra-high molecular weight polyethylene. J Polym Sci B 36(3):495–517

    Article  CAS  Google Scholar 

  7. Voigt-Martin IG, Fisher EW (1980) Mandelkern L. Morphology of melt-crystallized linear polyethylene fractions and its dependence on molecular weight and crystallization temperature. J Polym Sci B Polym Phys 18(12):2347–2367

  8. Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK (2004) Alphat-copherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials 25(24):5515–5522

    Article  CAS  PubMed  Google Scholar 

  9. Kajiwara K, Mcintyre JE (1994) Advanced fiber spinning technology. Woodhead Publishing Ltd, Cambridge, pp 172–186

    Google Scholar 

  10. Khatiwada S, Armada CA, Barrera EV (2013) Hypervelocity Impact Experiments on Epoxy/Ultra-high Molecular Weight Polyethylene Fiber Composites Reinforced with Single-walled Carbon Nanotubes. Procedia Engineering 58:4–10

    Article  CAS  Google Scholar 

  11. Jana S, Hinderliter BR, Zhong WH (2008) Analytical study of tensile behaviors of UHMWPE/nano-epoxy bundle composites. J Mater Sci 43(12):4236–4246

    Article  CAS  Google Scholar 

  12. Kalb B, Pennings AJ (1980) Maximum strength and drawing mechanism of hot drawn high molecular weight polyethylene. J Mater Sci 15(10):2584–2590

    Article  CAS  Google Scholar 

  13. Ohta T (1983) Review on processing ultrahigh tenacity fibers from flexible polymer. Polym Eng Sci 23(13):697–703

    Article  CAS  Google Scholar 

  14. Sattari M, Mirsalehi SA, Khavandi A, Alizadeh O, Naimi-Jamal MR (2015) Non-isothermal melting and crystallization behavior of UHMWPE/SCF/nano-SiO2 hybrid composites. J Therm Anal Calorim 122(3):1319–1330

  15. Smith P, Lemstra PJ (1980) Ultra-high strength polyethylene filaments by solution spinning/drawing. 3. Influence of drawing temperature. Polymer 15(2):505–514

  16. Yeh JT, Lin SC, Chen KN, Huang KS (2008) Investigation of the ultradrawing properties of gel spun fibers of ultra-high molecular weight polyethylene/carbon nanotube blends. J Appl Polym Sci 110(5):2538–2548

    Article  CAS  Google Scholar 

  17. Yeh JT, Lin SC, Tu CW, Hsie KH, Chang FC (2008) Investigation of the drawing mechanism of UHMWPE fibers. J Mater Sci 43(14):4892–4900

    Article  CAS  Google Scholar 

  18. Fan WX, Ding Y, Tu ZD, Huang KS, Huang CM, Yeh JT (2018) Enhancement on ultimate tensile properties of ultrahigh molecular weight polyethylene composite fibers filled with activated nanocarbon particles with varying specific surface areas. Polym Eng Sci 58(6):980–990

    Article  CAS  Google Scholar 

  19. Yeh JT, Wang CK, Hu P, Lai YC, Huang LK, Tsai FC (2012) Ultra-drawing properties of ultrahigh-molecular-weight polyethylene/attapulgite fibers. Polym Int 61(6):982–989

    Article  CAS  Google Scholar 

  20. Yeh JT, Wang CK, Yeh A, Huang LK, Wang WH, Hsieh KH, Huang CY, Chen KN (2013) Preparation and characterization of novel ultra-high molecular weight polyethylene composite fibers filled with nanosilica particles. Polym Int 62(4):591–600

    Article  CAS  Google Scholar 

  21. Penning JP, Pras HE, Pennings AJ (1994) Influence of chemical crosslinking on the creep behavior of ultra-high molecular weight polyethylene fibers. Colloid Polym Sci 272(6):664–676

    Article  CAS  Google Scholar 

  22. Hoffman JD, Miller RL (1997) Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38(13):3151–3212

    Article  CAS  Google Scholar 

  23. Shen H, He L, Fan C, Xie B, Yang W, Yang M (2015) Improving the integration of HDPE/UHMWPE blends by high temperature melting and subsequent shear. Mater Lett 138(1):247–250

    Article  CAS  Google Scholar 

  24. Barham PJ, Keller A (1980) Some observations on the production of polyethylene fibres by the surface growth method. J Mater Sci 15(9):2229–2235

    Article  CAS  Google Scholar 

  25. Zwijnenburg A, Pennings AJ (1976) Longitudinal growth of polymer crystals from flowing solutions III. Polyethylene crystals in Couette flow. Colloid Polym Sci 254(10):868–881

  26. Torfs CM, Pennings A J (1981) Longitudinal growth of polymer crystals from flowing solutions. VIII. Mechanism of fiber formation on rotor surface. J Appl Polym Sci 26(1): 03–320

  27. Taylor WN, Clark ES (2010) Superdrawn filaments of polypropylene. Polym Eng Sci 18(6):518–526

    Article  Google Scholar 

  28. Kamezawa M, Yamada K, Takayanagi M (2010) Preparation of ultrahigh modulus isotactic polypropylene by means of zone drawing. J Appl Polym Sci 24(5):1227–1236

    Article  Google Scholar 

  29. Smith P, Lemstra PJ, Kalb B (1979) Ultrahigh-strength polyethylene filaments by solution spinning and hot drawing. Polym Bull 1(11):733–736

    Article  CAS  Google Scholar 

  30. Pennings AJ, Roukema M, Veen VD (1990) Further studies on the high-speed gel-spinning of ultrahigh molecular weight polyethylene. Polym Bull 23(3):353–359

    Article  CAS  Google Scholar 

  31. Barham PJ, Keller A (1985) High-strength polyethylene fibres from solution and gel spinning. J Mater Sci 20(7):2281–2302

    Article  CAS  Google Scholar 

  32. De A (2015) Opto-Electrical Study of Sol-Gel Derived Antimony Doped Tin Oxide Films on Glass. Trans Electr Electro 16(1):5–9

    Article  Google Scholar 

  33. Chen M, Jiang B, Wang J, Yang Y, Stapf S (2015) Mattea C. Investigation of the extraction process in gel-spinning technology for ultrahigh-molecular-weight polyethylene fibers by low-field nuclear magnetic resonance. J Appl Polym Sci 132(23):309–318

  34. Ohta Y, Murase H, Hashimoto T (2010) Structural development of ultra-high strength polyethylene fibers: Transformation from kebabs to shishs through hot-drawing process of gel-spun fibers. J Polym Sci B Polym Phys 48(17):1861–1872

    Article  CAS  Google Scholar 

  35. Fang X, Jing W, Zhao L, Zhao Y, Jiang Z (2017) Effect of molecular weight and concentration on gel-spun UHMWPE fibers with polybutene as a new spin solvent. Proceedings of the ASME International Mechanical Engineering Congress & Exposition 14(11):3–9

    Google Scholar 

  36. Pennings AJ, Smith P (1979–06–10) Ultra-high Molecular Weight Polyethylence Fiber by Gel spinning and Ultra Tensile Technique. Netherlands, NL177840

  37. Smook J, Pennings AJ (1983) Preparation of ultra-high strength polyethylene fibres by gel-spinning/hot-drawing at high spinning rates. Polym Bull 9(3):75–80

    CAS  Google Scholar 

  38. Smith P, Lemstra PJ (1980) Ultra-high-strength polyethylene filaments by solution spinning/drawing. J Mater Sci 15(2):505–514

    Article  CAS  Google Scholar 

  39. Marikhin VA, Mjasnikova LP (1993) Structural basis of high-strength high-modulus polymers. Progr Colloid Polym Sci 92(1):39–51

    Article  CAS  Google Scholar 

  40. Zhang JX, Lei T, Yeh JT (2020) Multiple-stage drawn ultrahigh molecular weight polyethylene/activated carbon fibers prepared with the assistance of supercritical CO2. Polym Compos 12(41):4994–5005

    Article  Google Scholar 

  41. Fak irov S (1996) Oriented Polymer Materials., Berlin: Huethig & Wepf Verlag Zug 38–98.

  42. Lei T, Huang KS, Kuo MC, Runt J, Yeh JT (2019) Utilization of supercritical CO2 as a processing aid for preparation of ultrahigh molecular weight polyethylene/functionalized activated nanocarbon fibers. Polym Eng Sci 59(7):1–10

    Article  Google Scholar 

  43. Xiang Y, Tu ZD, Lei T, Zhang JX, Yeh JT (2021) Multiple-step drawing innovative ultrahigh-molecular-weight polyethylene fibers modified with bacterial cellulose and scCO2-aid. J Appl Polym Sci 31(138):744–756

    Google Scholar 

  44. Pennings AJ, Smith P (1979–06–10) Ultra-high Molecular Weight Polyethylence Fiber by Gel spinning and Ultra Tensile Technique.: NL177840

  45. Yeh JT, Wu TW, Lai YC, Zhou HP, Zhou Q, Li QC, Wen S, Tsai FC, Huang CY, Huang KS (2011) Ultradrawing properties of ultra-high molecular weight polyethylene/functionalized carbon nanotube fibers. Polym Eng Sci 51(12):2552–2563

    Article  CAS  Google Scholar 

  46. Yeh JT, Lin SC, Chen KN (2008) Investigation of the ultradrawing properties of gel-spun fibers of ultra-high molecular weight polyethylene/carbon nanotube blends. J Appl Polym Sci 110(5):2538–2548

    Article  CAS  Google Scholar 

  47. Yeh JT, Wu TW, Lai YC (2011) Ultradrawing properties of ultrahigh-molecular weight polyethylene/functionalized carbon nanotube fibers and transmittance properties of their gel solutions. Polym Eng Sci 51(12):2552–2563

    Article  CAS  Google Scholar 

  48. Yeh JT, Wang CK, Hu P, Lai YC, Huang LK, Tasi FC (2012) Ultradrawing properties of ultrahigh-molecular-weight polyethylene/attapulgite fibers. Polym Int 61(6):982–989

    Article  CAS  Google Scholar 

  49. Yeh JT, Wang CK, Yeh A (2013) Preparation and characterization of novel ultra-high molecular weight polyethylene composite fibers filled with nanosilica particles. Polym Int 62(4):591–600

    Article  CAS  Google Scholar 

  50. Yeh JT, Wang CK, Yu W, Huang KS (2015) Ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene composite fibers filled with functionalized nanoalumina fillers. Polym Eng Sci 55(10):2205–2214

    Article  CAS  Google Scholar 

  51. Fan WX, Tu ZD, Huang CM, Huang KS, Yeh JT (2016) Preparation of cellulose nanofibers and their improvement on ultradrawing properties of ultrahigh molecular weight polyethylene nanocomposite fibers. Polym Adv Technol 28(6):708–716

    Article  Google Scholar 

  52. Yeh JT, Tsai CC, Wang CK (2014) Ultradrawing novel ultra-high molecular weight polyethylene fibers filled with bacterial cellulose nanofibers. Carbohyd Polym 101(1):1–10

    Article  CAS  Google Scholar 

  53. Fan WX, Wang CK, Tsai CC (2016) Ultradrawing properties of ultrahigh molecular weight polyethylenes/functionalized activated nanocarbon as-prepared fibers. RSC adv 6(4):3165–3175

    Article  CAS  Google Scholar 

  54. Hoogsteen W, Van der Hooft RJ, Postema AR, Ten Brinke G, Pennings AJ (1988) Gel-spun polyethylene fibres. J Mater Sci 23(10):3459–3466

    Article  CAS  Google Scholar 

  55. Yamaura K, Suzuki M, Yamamoto M, Shimada R, Tanigami T (2010) Gelation of poly(vinyl alcohol)/phenol/water solutions and gel spinning. J Appl Polym Sci 58(10):1787–1791

    Article  Google Scholar 

  56. Yeh JT, Chang SS, Yen MS (1998) Ultradrawing behavior of one-and two-stage drawn gel films of ultrahigh molecular weight polyethylene and low molecular weight polyethylene blends. J Appl Polym Sci 70(1):149–159

    Article  CAS  Google Scholar 

  57. Kanamoto T, Tsuruta A, Tanaka K, Takeda M, Porter RS (1983) On ultra-high tensile modulus by drawing single crystal mats of high molecular weight polyethylene. Polym J 15(4):327–329

    Article  CAS  Google Scholar 

  58. Lee DM, Chen WL, Yeh MT, Chen TS (1995) The effect of drawing temperature on multi-stage drawn ultra-high molecular weight polyethylene. Polym Eng Sci 35(19):1555–1561

    Article  CAS  Google Scholar 

  59. Kanamoto T, Tsuruta A, Tanaka K, Takeda M (1984) Ultra-high modulus and strength films of high molecular weight polypropylene obtained by drawing of single crystal mats. Polym J 16(1):754–786

    Article  Google Scholar 

  60. Marikhin VA, Mjasnikova LP, Zenke D, Hirte R, Weigel P (1984) Ultra-high strength Ultra-high modulus Fibers from Polyethylene. Polym Bull 12:287–292

    Article  CAS  Google Scholar 

  61. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluid 28(2–3):121–191

    Article  CAS  Google Scholar 

  62. Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383(6598):313

    Article  CAS  Google Scholar 

  63. Yalpani M (1993) Supercritical fluids: puissant media for the modification of polymers and biopolymers. Polymer 34(5):1102–1105

    Article  CAS  Google Scholar 

  64. Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydr Polym 67(2):147–154

    Article  CAS  Google Scholar 

  65. Della PG, Del Gaudio P, De Cicco F, Aquino RP, Reverchon E (2013) Supercritical drying of alginate beads for the development of aerogel biomaterials: optimization of process parameters and exchange solvents. Ind Eng Chem Res 52(34):12003–12009

    Article  Google Scholar 

  66. García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym 117:797–806

    Article  PubMed  Google Scholar 

  67. Ivanovic J, Milovanovic S, Zizovic I (2016) Utilization of supercritical CO2 as a processing aid in setting functionality of starch-based materials. Starch-Stärke 68(9–10):821–833

    Article  CAS  Google Scholar 

  68. Cao L, Chen L, Chen X, Zuo L, Li Z (2006) Synthesis of smart core–shell polymer in supercritical carbon dioxide. Polymer 47(13):4588–4595

    Article  CAS  Google Scholar 

  69. Sihvonen M, Järvenpää E, Hietaniemi V, Huopalahti R (1999) Advances in supercritical carbon dioxide technologies. Trends Food Sci Technol 10(6–7):217–222

    Article  CAS  Google Scholar 

  70. Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog Polym Sci 31(1):19–43

    Article  CAS  Google Scholar 

  71. Bartle KD, Clifford AA, Jafar SA, Shilstone GF (1991) Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide. J Phys Chem Ref Data 20(4):713–756

    Article  CAS  Google Scholar 

  72. Winterer M (2002) Gas Phase Synthesis. Springer, Berlin Heidelberg 53:10–11

    Google Scholar 

  73. Li C, Hu Y, Yuan W (2010) Nanomaterials synthesized by gas combustion flames: Morphology and structure. Particuology 8(6):556–562

    Article  CAS  Google Scholar 

  74. Kostoglou N, Koczwara C, Prehal C, Terziyska V, Babic B, Matovic B (2017) Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy 97:49–64

    Article  Google Scholar 

  75. Guo Y, Zhao J, Hui Z, Yang S, Qi J, Wang Z (2005) Use of rice husk-based porous carbon for adsorption of rhodamine b from aqueous solutions. Dyes Pigm 66(2):123–128

    Article  CAS  Google Scholar 

  76. Bouhamed F, Elouear Z, Bouzid J (2012) Adsorptive removal of copper (II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. J Taiwan Inst Chem E 43(5):741–749

    Article  CAS  Google Scholar 

  77. Yang C, Xia KL, Gong RM, Liu HJ, Sun YZ (2005) Utilization of powdered peanut hull as biosorbent for removalof azo dyes from aqueous soulution. J Biol 64:187–192

    Google Scholar 

  78. Anirudhan TS, Sreekumari S (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23(12):1989–1998

    Article  CAS  Google Scholar 

  79. Huang LH, Sun YY, Tao Y, Li L (2011) Adsorption behavior of Ni (ii) on lotus stalks derived active carbon by phosphoric acid activation. Desalination 268(1–3):12–19

    Article  CAS  Google Scholar 

  80. Demirba E, Kobya M, Ncel S (2002) Encan S. Removal of ni(ii) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresour Technol 84(3):291–293

  81. Fatriansyah JF, Matari T, Harjanto S (2018) The preparation of activated carbon from coconut shell charcoal by novel mechano-chemical activation. Mater Sci Forum 929:50–55

    Article  Google Scholar 

  82. Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4):471–479

    Article  CAS  Google Scholar 

  83. Rashidi AM, Kazemi D, Izadi N, Pourkhalil M, Jorsaraei A, Ganji E (2016) Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Chem Eng J 33(2):616–622

    CAS  Google Scholar 

  84. Ma X, Yang H, Yu L, Chen Y, Li Y (2014) Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation. Materials 7(6):4431–4433

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38(13):1873–1878

    Article  CAS  Google Scholar 

  86. Kazemi D, Lotfi R, Ganji E, Lzadi N, Pourkhalil M (2016) Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean Chem Eng J 43:265–273

    Google Scholar 

  87. Hoffman JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res the National Bureau of Standards 66(1):13–28

    Article  Google Scholar 

  88. Xiao CF, Zhang YF, An SL, Jia GX (1996) Investigation on the thermal behaviors and mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers. J Appl Polym Sci 59(6):931–935

    Article  CAS  Google Scholar 

  89. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2011) Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems. Chem Mater 17(6):1290–1295

    Article  Google Scholar 

  90. Toles C, Rimmer S, Hower JC (1996) Production of activated carbons from a washington lignite using phosphoric acid activation. Carbon 34(11):1419–1426

    Article  CAS  Google Scholar 

  91. Smook J, Torfs JC, Hutten FV, Pennings AJ (1980) Ultra-high strength polyethylene by hot drawing of surface growth fibers. Polym Bull 2(5):293–300

    Article  CAS  Google Scholar 

  92. Li CQ, Yong Z, Zhang YX (2003) Melt grafting of maleic anhydride onto low-density polyethylene/polypropylene blends. Polym Test 22(2):191–195

    Article  Google Scholar 

  93. Fontaine F, Ledent J, Groeninckx G, Reynaers H (1982) Morphology and melting behaviour of semi-crystalline poly (ethylene terephthalate): 3. Quantification of crystal perfection and crystallinity. Polymer 23(2):185–191

  94. Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation-a review. Polymer 26(8):1123–1133

    Article  CAS  Google Scholar 

  95. Khanna YP, Turi EA, Taylor TJ, Vickroy VV, Abbott RF (1985) Dynamic mechanical relaxations in polyethylene. Macromolecules 18(6):1302–1309

    Article  CAS  Google Scholar 

  96. Saini DR, Shenoy AV (1983) Viscoelastic properties of linear low density polyethylene melts. Eur Polym J 19(9):811–816

    Article  CAS  Google Scholar 

  97. Clas SD, McFaddin DC, Russell KE (1987) Dynamic mechanical properties of homogeneous copolymers of ethylene and 1-alkenes. J Polym Sci Pol Phys 25(5):1057–1069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Ministry of Science and Technology (107-2221-E-168-003-MY3) in Taiwan for support of this work.

Funding

This work supported by Ministry of Science and Technology in Taiwan (107–2221-E-168–003-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-taut Yeh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yu Xiang and Xi-hao Li The authors are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Li, Xh. & Yeh, Jt. Multistage drawing scCO2-assisted ultrahigh molecular weight polyethylene/activated nanocarbon fibers and their performance. J Polym Res 29, 78 (2022). https://doi.org/10.1007/s10965-022-02918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02918-6

Keywords

Navigation