Skip to main content
Log in

Development of self-standing, lightweight and flexible polymer-cobalt ferrite nanocomposites for field sensor

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, detailed results of the development (i.e., preparation and characterization using standard techniques) of self-standing, lightweight, flexible polymer (PVDF)-cobalt ferrite (CoFe2O4) nano-composite (PCFNC) thin films have been reported. The occurrence of major electroactive β-phase with small spherulite phase has been detected on the introduction of nano-cobalt ferrite particle in the ferroelectric PVDF polymer using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and atomic force microscope (AFM) techniques. The ambient temperature relative permittivity of PCFNC found to be nearly 80 with a tangent loss of 0.6 suggests the suitability of the composite for a flexible and lightweight capacitor device. Analysis of Impedance spectroscopy data confirms the contributions of grains and grain boundaries to the resistive and capacitive characteristics of the material. The frequency dependence of ac conductivity follows Jonscher’s power law and is found to be in the order of 10−5Ω.m−1. The optical bandgap of the composite is found to be 3.66 eV which has better thermal stability as compared to that of PVDF thin film. The room temperature ferromagnetic hysteresis behaviour displays a saturation magnetization of 4emu/gm. The ferroelectric hysteresis loop provides an invariable saturation polarization of 6μC/cm2 at an applied frequency while the coercive field decreases with rising frequency. The first-order room temperature magneto-electric coupling coefficient of the composite is found to be 198 mV/cm. Oe at zero DC bias magnetic field. This unique field sensing characteristic suggests the potential application of the developed material in multifunctional devices, particularly as a field sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fiebig M, Lottermoser T, Meier D, Trassin M (2016) The evolution of multiferroics. Nat Rev Mater 1:16046

    Article  CAS  Google Scholar 

  2. Spaldin NA, Ramesh R (2019) Advances in magnetoelectric multiferroics. Nat Mater 18:203

    Article  PubMed  CAS  Google Scholar 

  3. Keeney L, Maity T, Schmidt M, Amann A, Deepak N, Petkov N, Roy S, Pemble ME, Whatmore RW (2013) Magnetic field-induced ferroelectric switching in multiferroic Aurivillius. J Am Ceram Soc 96:2339

    Article  CAS  Google Scholar 

  4. Liu M, Obi O, Lou J, Chen YJ, Cai ZH, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures. Adv Funct Mater 19:1826

    Article  Google Scholar 

  5. Nan CW (1994) Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases Phys. Rev B 50:6082

    Article  CAS  Google Scholar 

  6. Jiansirisomboon S, Songsiri K, Watcharapasorn A, Tunkasiri T (2006) Mechanical properties and crack growth behavior in poled ferroelectric PMN–PZT ceramics Curr. Appl Phys 6:299

    Google Scholar 

  7. Scott JF (2012) Applications of Magnetoelectrics. J Mater Chem 22:4567

    Article  CAS  Google Scholar 

  8. Roy S, Biswas B, Majumder SB (2008) Investigation on Flexible Multiferroic Composites. AIP Conf Proc 1063:276

    Article  CAS  Google Scholar 

  9. Ghosh SK, Perla VK, Mallick K (2020) Enhancement of dielectric and electric-field-induced polarization of bismuth fluoride nanoparticles within the layered structure of carbon nitride. Sci Rep 10:14835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu Y, Aziguli H, Zhang B, Xu W, Lu W, Bernholc J, Wang Q (2018) Ferroelectric polymers exhibiting behavior reminiscent of a morphotropic phase boundary. Nature 562:96–100

    Article  PubMed  CAS  Google Scholar 

  11. Jiang S, Wan H, Liu H, Zeng Y, Liu J, Wu Y, Zhang G (2016) High β phase content in PVDF/CoFe2O4 nanocomposites induced by DC magnetic fields. Appl Phys Lett 109: 102904

  12. Sengupta D, Kottapalli AGP, Chen SH, Miao JM, Kwok CY, Triantafyllou MS, Warkiani M E, Asadnia M (2017) Characterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing Applications. AIP Adv 7: 105205

  13. Zhu L, Wang Q (2012) Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45(7):2937

    Article  CAS  Google Scholar 

  14. Lovinger AJ (1983) Ferroelectric polymers. Science 220(4602):1115

    Article  PubMed  CAS  Google Scholar 

  15. Osman CB, Barthas E, Decorse P, Mammeri F (2019) Surface functionalization of CoFe2O4 nanoparticles for driving the crystallization of the electroactive b-PVDF through judicious tailoring of the hybrid interface. Colloids Surf, A 577:405

    Article  Google Scholar 

  16. Gao X, Liang S, Ferri A, Huang W, Rouxel D, Devaux X, Li X G, Yang H, Chshiev M, Desfeux R, Costa A D, Hu G, Stoffel M, Nachawaty A, Jiang C, Zeng Z, Liu JP, Yang H, Lu Y (2020) Enhancement of ferroelectric performance in PVDF: Fe3O4 nanocomposite based organic multiferroic tunnel junctions. Appl Phys Lett 116: 152905

  17. Radwan AB, Mohamed AMA, Abdullah AM, Maadeed MA (2015) Super hydrophobic and Corrosion Behavior of Electrospun PVDF-ZnO Coating. ECS Trans 64:57

    Article  Google Scholar 

  18. Bliznyuk VN, Baig A, Singamaneni S, Pud AA, Fatyeyeva KY, Shapoval GS (2005) Effects of surface and volume modification of poly(vinylidene fluoride) by polyaniline on the structure and electrical properties of their composites. Polymer 46:11728

    Article  CAS  Google Scholar 

  19. Jiang J, Zhang X, Dan Z, Ma J, Lin Y, Li M, Nan CW, Shen Y (2017) Tuning Phase Composition of Polymer Nanocomposites towards High Energy Density and High Discharge Efficiency by Non-Equilibrium Processing. ACS Appl Mater Interfaces 9:29717

    Article  PubMed  CAS  Google Scholar 

  20. Nguyen AN, Solard J, Nong HTT, Osman CB, Gomez A, Bockelée V, Girault ST, Schoenstein F, Sorbed MS, Carrillo AE, Mercone S (2020) Spin Coating and Micro-Patterning Optimization of Composite Thin Films Based on PVDF. Materials 13:1342

    Article  PubMed Central  CAS  Google Scholar 

  21. Mayeen A, Kala MS, Jayalakshmy MS, Thomas S, Rouxel D, Philip J, Bhowmik RN, Kalarikkal N (2018) Dopamine functionalization of BaTiO3: An effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3 - PVDF –TrFE nanocomposite. Dalton Trans 47:2039

    Article  PubMed  CAS  Google Scholar 

  22. Kim S, Song Y, Heller MJ (2017) Influence of MWCNTs on β-Phase PVDF and Triboelectric Properties. J Nanomater 2017:2697382

    Article  Google Scholar 

  23. Chamakh MM, Mrlík M, Leadenham S, Bažant P, Osiˇcka J, AlMaadeed MAA, Erturk A, Kuˇritka I (2020) Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties. Nanomaterials 10:2345

    Article  PubMed Central  CAS  Google Scholar 

  24. Dumitrescu LN, Neacsu P, Necula MG, Bonciu A, Marascu V, Cimpean A, Moldovan A, Rotaru A, Dinca V, Dinescu M (2020) Induced Hydrophilicity and In Vitro Preliminary Osteoblast Response of Polyvinylidene Fluoride (PVDF) Coatings Obtained via MAPLE Deposition, Subsequent Thermal Treatment. Molecules 25:582

    Article  PubMed Central  CAS  Google Scholar 

  25. Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang X (2018) Properties and Applications of the ß Phase Poly(vinylidene fluoride). Polymers 10:228

    Article  PubMed Central  Google Scholar 

  26. Engel S, Smykalla D, Ploss B, Gräf S, Müller FA (2018) Polarization Properties and Polarization Depth Profiles of (Cd: Zn)S/P(VDF-TrFE) Composite Films in Dependence of Optical Excitation. Polymers 10:1205

    Article  PubMed Central  Google Scholar 

  27. Sannigrahi J, Bhadra D, Chaudhuri BK (2013) Crystalline graphite oxide/PVDF nanocomposite gate dielectric: Low-voltage and high field-effect mobility thin-film transistor. Phys Status Solidi A 210:546

    Article  CAS  Google Scholar 

  28. Shehzad M, Malik T (2018) Antiferroelectric Behavior of P(VDF-TrFE) and P(VDF-TrFE-CTFE) Ferroelectric Domains for Energy Harvesting. ACS Appl Energy Mater 1:2832

    Article  CAS  Google Scholar 

  29. Liew WH, Mirshekarloo MS, Chen S, Yao K, Tay FEH (2015) Nanoconfinement induced crystal orientation and large piezoelectric coefficient in vertically aligned P(VDF-TrFE) nanotube array. Sci Rep 5:9790

    Article  PubMed  CAS  Google Scholar 

  30. Tao M, Liu F, Xue L (2012) Hydrophilic poly(vinylidene fluoride) (PVDF) membrane by in situ polymerization of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation. J Mater Chem 22:9131

    Article  CAS  Google Scholar 

  31. Yang L, Li X, Allahyarov E, Taylor PL, Zhang QM, Zhu L (2013) Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54:1709

    Article  CAS  Google Scholar 

  32. Jiang S, Wan H, Liu H, Zeng Y, Liu J, Wu Y, Zhang G (2016) High beta phase content in PVDF/CoFe2O4 nanocomposites induced by DC magnetic fields. Appl Phys Lett 109: 102904

  33. Martins P, Costa CM, Ferreira JCC, Lanceros-Mendez S (2012) Correlation between Crystallization Kinetics and Electroactive Polymer Phase Nucleation in Ferrite/Poly(vinylidene fluoride)Magnetoelectric Nanocomposites. J Phys Chem B 116:794

    Article  PubMed  CAS  Google Scholar 

  34. Cheng C, Dai J, Li Z, Feng W (2020) Preparation and Magnetic Properties of CoFe2O4 Oriented Fiber Arrays by Electrospinning. Materials 13:3860

    Article  PubMed Central  CAS  Google Scholar 

  35. Ourry L, Marchesini S, Bibani M, Mercone S, Ammar S, Mammeri F (2015) Influence of nanoparticle size and concentration on the electroactive phase content of PVDF in PVDF–CoFe2O4-based hybrid films. Phys Status Solidi A 212:252

    Article  CAS  Google Scholar 

  36. Mago G, Fisher FT, Kalyon DM (2009) Deformation-Induced Crystallization and Associated Morphology Development of Carbon Nanotube-PVDF Nanocomposites. J Nanosci Nanotechnol 9:3330

    Article  PubMed  CAS  Google Scholar 

  37. Manna S, Batabyal SK, Nandi AK (2012) Preparation and Characterization of Silver−Poly(vinylidene fluoride) Nanocomposites: Formation of Piezoelectric Polymorph of Poly(vinylidene fluoride). J Phys Chem B 116:794

    Google Scholar 

  38. Choi MH, Yang SC (2018) CoFe2O4 nanofiller effect on β-phase formation of PVDF matrix for polymer-based magnetoelectric composites. Mater Lett 223:73

    Article  CAS  Google Scholar 

  39. Behera C, Choudhary RNP, Das PR (2015) Size effect on electrical and magnetic properties of mechanically alloyed CoFe2O4 nanoferrite. J Mater Sci: Mater Electron 26:2343

    CAS  Google Scholar 

  40. Martins P, Costa CM, Mendez SL (2011) Nucleation of electroactive β-phase poly(vinylidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Appl Phys A 103:233

    Article  CAS  Google Scholar 

  41. Alqaheem Y, Alomair AA (2020) Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 10:33

    Article  PubMed Central  CAS  Google Scholar 

  42. Akashi N, Kuroda S (2014) Protein immobilization onto poly (vinylidene fluoride) microporous membranes activated by the atmospheric pressure low-temperature plasma. Polymer 55:2780

    Article  CAS  Google Scholar 

  43. Gonçalves R, Martins P, Correia DM, Sencadas V, Vilas JL, León LM, Botelho G, Lanceros-Méndez S (2015) Development of novel magnetoelectric CoFe2O4 /poly(vinylidene fluoride) microspheres. RSC Adv 5:35852–35857

    Article  Google Scholar 

  44. Song Y, Shen Y, Lin HY, Lin YH, Li M, Nan CW (2012) Improving the dielectric constants and breakdown strength of polymercomposites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22:16491

    Article  CAS  Google Scholar 

  45. Sharma AK, Sharma GD (2014) Dielectric properties of 0–3 PZT/PVDF/Graphite composite. Int J Sci Eng Res 5:245

    Google Scholar 

  46. Liu S, Xue S, Zhang W, Zhai J, Chen G (2014) Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2:18040

  47. West AR, Sinclair DC, Hirose N (1997) Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J Electroceram 1:65

    Article  CAS  Google Scholar 

  48. Behera C, Choudhary RNP, Das PR (2016) Structural, dielectric, impedance and magneto-electric properties of mechanically synthesized (Bi0.5Ba0.25Sr0.25) (Fe0.5Ti0.5)O3 nanoelectronic system. Mater Res Express 3: 035005

  49. Karthik C, Verma KBR (2006) Dielectric and AC conductivity behavior of BaBi2Nb2O9 ceramics. J Phys Chem Solids 67:2437

    Article  CAS  Google Scholar 

  50. Natesan B, Karan NK, Katiyar R S (2006) Ion relaxation dynamics and nearly constant loss behavior in polymer electrolyte. Phys Rev E 74:042801

  51. Pelaiz-Barranco A, Abreu YG, Lopez-Noda R (2008) Dielectric relaxation and conductivity behavior in modified lead titanate ferroelectric ceramics, J Phys.:Condens Mater 2:505208

  52. Rajendran S, Uma T (2000) Lithium-ion conduction in PVC-LiBF4 electrolytes gelled with PMMA. J Power Sources 88:282

    Article  CAS  Google Scholar 

  53. Jaleh B, Fakhri P, Noroozi M, Muensit N (2012) Influence of Copper Nanoparticles Concentration on the Properties of Poly(vinylidene fluoride)/Cu Nanoparticles Nanocomposite Films. J Inorg Organomet Polym 22:878–885

    Article  CAS  Google Scholar 

  54. Kim KM, Jeon WS, Park NG, Ryu KS, Chang SH (2003) Effect of Evaporation Temperature on the Crystalline Properties of Solution-Cast Films of Poly(vinylidene fluoride)s, Korean. J Chem Eng 20:934–941

    CAS  Google Scholar 

  55. Ouyang ZW, Chen EC, Wu TM (2015) Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites. Materials 8:4553–4564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Martin P, Lasheras A, Gutierrez JJ, Barandiaran JM, Orue I, Mendez SL (2011) Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. J Phys D: Appl Phys 44:495303

  57. Zhang X, Dai JY, So LC, Sun CL, Lo CY, Or SW, Chan HLW (2009) The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites. J Appl Phys 105:054102

  58. Rani J, Yadav KL, Prakas S (2015) Structural and magnetodielctric properties of Poly (vinylidene-flyoride)-[0.8(Bi0.5Na0.5)TiO-0.2CoFe2O4] Polymer Composite Films. Compos Part B 79:138

  59. Gou Y, Liu Y, Wang J, Withers RL, Chen H, Jin L, Smith P (2010) Giant Magnetodielectric Effect in 0−3 Ni0.5Zn0.5Fe2O4-Poly(vinylidene-fluoride) Nanocomposite Films. J Phys Chem C 114:13861

  60. Rana DK, Singh SK, Kundu SK, Roy S, Angappane S, Basu S (2019) Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles. New J Chem 43:3128

    Article  CAS  Google Scholar 

  61. Li Y, Li J, Liang R, Zhao R, Xiong B, Liu H, Tian H, Yang Y, Ren TL (2019) Switching dynamics of ferroelectric HfO2-ZrO2 with various ZrO2 contents, Appl Phys Lett 114:142902 s

  62. Prasad PD, Hemalatha J (2019) Enhanced dielectric and ferroelectric properties of cobalt ferrite (CoFe2O4) fiber embedded polyvinylidene fluoride (PVDF) multiferroic composite films. Mater Res Express 6:094007

  63. Silibin MV, Belovickis J, Svirskas S, Ivanov M, Banys J, Solnyshkin AV, Gavrilov SA, Varenyk OV, Pusenkova AS, Morozovsky N, Shvartsman VV, Morozovska AN (2015)  Polarization reversal in organic-inorganic ferroelectric composites: Modeling and experiment. Appl Phys Lett 107: 142907

  64. Kusuma DY, Nguyen CA, Lee PS (2010) Enhanced Ferroelectric Switching Characteristics of P(VDF-TrFE) for Organic Memory Devices. J Phys Chem B 114:13289

    Article  PubMed  CAS  Google Scholar 

  65. Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q (2009) Nanocomposite of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Adv Mater 21:217

    Article  Google Scholar 

  66. Baek G, Yang SC (2021) Effect of the Two-Dimensional Magnetostrictive Fillers of CoFe2O4-Intercalated Graphene Oxide Sheets in 3–2 Type Poly(vinylidene fluoride)-Based Magnetoelectric Films. Polymers 13:1782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Das SN (2020) Relaxor (Pb0.7Bi0.3)(Mg0.231Nb0.462Fe0.3)O3 electronic compound for magnetoelectric field sensor applications. J Appl Phys 128:114101

  68. Chu B, Lin M, Neese B, Zhou X, Chen Q, Zhang QM (2007) Large enhancement in polarization response and energy density of poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites. Appl Phys Lett 91:122909

Download references

Acknowledgements

The author acknowledges CRF, IIT Kharagpur for SEM, SQUID experiments.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to C. Behera.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, C., Pradhan, N., Das, P.R. et al. Development of self-standing, lightweight and flexible polymer-cobalt ferrite nanocomposites for field sensor. J Polym Res 29, 65 (2022). https://doi.org/10.1007/s10965-022-02916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02916-8

Keywords

Navigation