Skip to main content
Log in

Configuration of molecularly imprinted polymers for specific uptake of pharmaceutical in aqueous media through radical polymerization method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Most of the MIP technology are used as sensors, especially for acetaminophen detection. However, there is a very limited study using MIP as acetaminophen separation. Thus, the current study elucidates the use of MIP for acetaminophen uptake in aqueous media. Application of MIP can reduce fouling. Acetaminophen, methacrylic acid (MAA), ethylene glycol dimethacrylate (EDGMA), 1,1’-Azobis(cyclohexanecarbonitrile) (ABCN) were used as template, functional monomer, cross-linker and initiator respectively. The molarity of cross-linker and functional monomer were varied for the study of imprinting effect of MIPs. High concentration of cross-linker exhibits poor binding ability of MIPs while high molarity of monomer demonstrated better performance in binding capacity. The optimum MIP was observed from template:monomer:cross-linker molar ratio at 1:58:15 with binding capacity of 5.2 mg/g polymer. Next, pristine PES and molecularly imprinted membrane (MIM) were fabricated using phase inversion method. MIM was prepared by adding optimum MIPs in casting solution for the study of antifouling properties as compared to pure membrane. The relative flux of MIM has showed a poor antifouling behaviour in real wastewater sample while demonstrating a good performance in synthetic solution. However, MIM has revealed a better rejection of acetaminophen in synthetic solution and aquaculture wastewater as compared to pristine membrane at 50.2 and 73.06% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. aus der Beek T, Weber F-A, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A (2016) Pharmaceuticals in the environment—Global occurrences and perspectives. Environ Toxicol Chem 35:823–835. https://doi.org/10.1002/etc.3339

  2. de Jesus GV, Almeida CMM, Rodrigues A, Ferreira E, Benoliel MJ, Cardoso VV (2015) Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res 72:199–208. https://doi.org/10.1016/j.watres.2014.10.027

    Article  CAS  Google Scholar 

  3. Zhang H (2014) Water-compatible molecularly imprinted polymers: Promising synthetic substitutes for biological receptors. Polymer 55:699–714. https://doi.org/10.1016/j.polymer.2013.12.064

    Article  CAS  Google Scholar 

  4. Che Lah NF, Ahmad AL, Low SC (2021) Molecular imprinted membrane biosensor for pesticide detection: Perspectives and challenges. Polym Adv Technol 32:17–30. https://doi.org/10.1002/pat.5098

    Article  CAS  Google Scholar 

  5. BelBruno JJ (2019) Molecularly Imprinted Polymers. Chem Rev 119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  PubMed  CAS  Google Scholar 

  6. Zhou T, Ding L, Che G, Wei J, Sang L (2019) Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. Trends Analyt Chem 114:11–28. https://doi.org/10.1016/j.trac.2019.02.028

    Article  CAS  Google Scholar 

  7. Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer nanoparticles in chemical sensing – Synthesis, characterisation and application. Sens Actuators B Chem 207:144–157. https://doi.org/10.1016/j.snb.2014.09.094

    Article  CAS  Google Scholar 

  8. Karnka R, Chaiyasat P, Chaiyasat A (2017) Synthesis of Uniform and Stable Molecularly Imprinted Polymer Particles by Precipitation Polymerization. Orient J Chem 33:2370. https://doi.org/10.13005/ojc/330529

  9. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084

    Article  CAS  Google Scholar 

  10. Ravi S, Choi Y, Choe JK (2020) Novel phenyl-phosphate-based porous organic polymers for removal of pharmaceutical contaminants in water. Chem Eng J 379:122290. https://doi.org/10.1016/j.cej.2019.122290

    Article  CAS  Google Scholar 

  11. Li Y, Zhang L, Dang Y, Chen Z, Zhang R, Li Y, Ye B-C (2019) A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens Bioelectron 127:207–214. https://doi.org/10.1016/j.bios.2018.12.002

    Article  PubMed  CAS  Google Scholar 

  12. Rana D, Bag K, Bhattacharyya SN, Mandal BM (2000) Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST. J Polym Sci B Polym Phys 38:369–375. https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3%3c369::AID-POLB3%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  13. Rana D, Mandal BM, Bhattacharyya SN (1996) Analogue Calorimetric Studies of Blends of Poly(vinyl ester)s and Polyacrylates. Macromolecules 29:1579–1583. https://doi.org/10.1021/ma950954n

    Article  CAS  Google Scholar 

  14. Katagawa K, Kobayashi T (2011) Using molecularly imprinted polymeric spheres for hybrid membranes with selective adsorption of bisphenol A derivatives. J Membr Sci 375:295–303. https://doi.org/10.1016/j.memsci.2011.03.054

    Article  CAS  Google Scholar 

  15. Che Lah NF, Ahmad AL, Low SC, Zaulkiflee ND (2021) Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio. Membranes 11:657. https://doi.org/10.3390/membranes11090657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Khan S, Wong A, Zanoni MVB, Sotomayor MDPT (2019) Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples. Mater Sci Eng C 103:109825. https://doi.org/10.1016/j.msec.2019.109825

    Article  CAS  Google Scholar 

  17. Mortari B, Khan S, Wong A, Fireman Dutra RA, Taboada Sotomayor MDP (2020) Next generation of optodes coupling plastic antibody with optical fibers for selective quantification of Acid Green 16. Sens Actuators B Chem 305:127553. https://doi.org/10.1016/j.snb.2019.127553

    Article  CAS  Google Scholar 

  18. Vasapollo G, Sole RD, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:5908–5945. https://doi.org/10.3390/ijms12095908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sellergren B (1999) Polymer-and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions. Trends Analyt Chem 18:164–174. https://doi.org/10.1016/j.memsci.2009.08.039

    Article  CAS  Google Scholar 

  20. Lim KF, Holdsworth CI (2018) Effect of formulation on the binding efficiency and selectivity of precipitation molecularly imprinted polymers. Molecules 23:2996. https://doi.org/10.3390/molecules23112996

    Article  PubMed Central  CAS  Google Scholar 

  21. Shahar T, Tal N, Mandler D (2016) Molecularly imprinted polymer particles: Formation, characterization and application. Colloids Surf A Physicochem Eng 495:11–19. https://doi.org/10.1016/j.colsurfa.2016.01.027

    Article  CAS  Google Scholar 

  22. Omidvar M, Mahmoud Mousavi S, Soltanieh M, Safekordi AA (2014) Preparation and characterization of poly (ethersulfone) nanofiltration membranes for amoxicillin removal from contaminated water. J Environ Health Sci 12:1-10. https://doi.org/10.1186/2052-336X-12-18

  23. Ahmad AL, Lah NFC, Low SC (2018) Configuration of molecular imprinted polymer for electrochemical atrazine detection. J Polym Res 25:243. https://doi.org/10.1007/s10965-018-1595-2

    Article  CAS  Google Scholar 

  24. Huang J, Zhang K, Wang K, Xie Z, Ladewig B, Wang H (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423:362–370. https://doi.org/10.1016/j.memsci.2012.08.029

    Article  CAS  Google Scholar 

  25. Shafie ZMHM, Ahmad AL (2018) Juxtaposition of PES based hollow fiber membrane: Antifouling and antibacterial potential of LiCl mediated PVA–ZnO blend. J Ind Eng Chem 62:273–283. https://doi.org/10.1016/j.jiec.2018.01.005

    Article  CAS  Google Scholar 

  26. Tiraferri A, Kang Y, Giannelis EP, Elimelech M (2012) Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environ Sci Technol 46:11135–11144. https://doi.org/10.1021/es3028617

    Article  PubMed  CAS  Google Scholar 

  27. Ahmad AL, Pang WY, Shafie ZMHM, Zaulkiflee ND (2019) PES/PVP/TiO2 mixed matrix hollow fiber membrane with antifouling properties for humic acid removal. J Water Process Eng 31:100827. https://doi.org/10.1016/j.jwpe.2019.100827

    Article  Google Scholar 

  28. Chang Y, Ko C-Y, Shih Y-J, Quémener D, Deratani A, Wei T-C, Wang D-M, Lai J-Y (2009) Surface grafting control of PEGylated poly (vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. J Membr Sci 345:160–169. https://doi.org/10.1016/j.memsci.2009.08.039

    Article  CAS  Google Scholar 

  29. Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis EP (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173–1177. https://doi.org/10.1002/adma.200306355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ministry of Education Malaysia Long Term Research Grant Scheme 1/2018 (LRGS/203/PJKIMIA/67215002). Authors would like to acknowledge Universiti Sains Malaysia for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yi Chin.

Ethics declarations

Conflicts of interests

The authors declare that there are no known competing financial or personal interests related to the work of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che Lah, N.F., Ahmad, A.L., Mohd Amri, M.H. et al. Configuration of molecularly imprinted polymers for specific uptake of pharmaceutical in aqueous media through radical polymerization method. J Polym Res 29, 41 (2022). https://doi.org/10.1007/s10965-022-02908-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02908-8

Keywords

Navigation