Skip to main content
Log in

Study the effect of fumed silica on the mechanical, thermal and tribological properties of silicone rubber nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study explored the mechanical, thermal, and tribological properties of silicone rubber (QM) / Fumed silica (FSiO2) nanocomposites. The mechanical properties of silicone rubber were increased by optimizing the silica content of the composite. The effects of applied load, temperature, and sliding speed on the tribological behavior of the samples were evaluated. The addition of FSiO2 significantly reduced the friction coefficient of the composite. Surface wear analysis of the nanocomposite revealed that the nanoparticles have a positive rolling effect. The strengthening properties of the compound improve significantly as the diffusion of FSiO2 increases, resulting in a more significant improvement in the tensile and dynamic material properties and a substantial reduction in the friction coefficient (25 percent) and specific wear rate (Ws). The silica-filled surface of the rubber is relatively smooth, with few grooves and ridges, and the reinforcing fillers seem to have anti-wear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xue L, Zhang Y, Zuo Y, Diao S, Zhang J, Feng S (2013) Preparation and characterization of novel UV-curing silicone rubber via thiol-ene reaction. Mater Lett 106:425–427. https://doi.org/10.1016/j.matlet.2013.05.084

    Article  CAS  Google Scholar 

  2. Diao S, Jin K, Yang Z, Lu H, Feng S, Zhang C (2011) The effect of phenyl modified fumed silica on radiation resistance of silicone rubber. Mater Chem Phys 129(1–2):202–208. https://doi.org/10.1016/j.matchemphys.2011.03.077

    Article  CAS  Google Scholar 

  3. Friedrich KB, Lu ZB, Hager AM (1995) Recent advances in polymer composites’ tribology. 190:139–144

  4. Xue Y, fei Li X, hai Zhang D, sheng Wang H, Chen Y, fa Chen Y (2018) Comparison of ATH and SiO2 fillers filled silicone rubber composites for HTV insulators. Compos Sci Technol 155:137–143. https://doi.org/10.1016/j.compscitech.2017.12.006

  5. Najam M et al (2020) Influence of silica materials on synthesis of elastomer nanocomposites: A review. J Elastomers Plast 52(8):747–771. https://doi.org/10.1177/0095244319888768

    Article  CAS  Google Scholar 

  6. Mora-Barrantes I, Rodríguez A, Ibarra L, González L, Valentín JL (2011) Overcoming the disadvantages of fumed silica as filler in elastomer composites. J Mater Chem 21(20):7381–7392. https://doi.org/10.1039/c1jm10410a

    Article  CAS  Google Scholar 

  7. He S et al (2018) Performance improvement in nano-alumina filled silicone rubber composites by using vinyl tri-methoxysilane. Polym Test 67(March):295–301. https://doi.org/10.1016/j.polymertesting.2018.03.023

    Article  CAS  Google Scholar 

  8. Xu Y, Gao Q, Liang H, Zheng K (2016) Effects of functional graphene oxide on the properties of phenyl silicone rubber composites. Polym Test 54:168–175. https://doi.org/10.1016/j.polymertesting.2016.07.013

    Article  CAS  Google Scholar 

  9. Chen D, Liu Y, Zhang H, Zhou Y, Huang C, Xiong C (2013) Influence of Polyhedral Oligomeric Silsesquioxanes (POSS) on Thermal and Mechanical Properties of Polydimethylsiloxane (PDMS) Composites Filled with Fumed Silica. J Inorg Organomet Polym Mater 23(6):1375–1382. https://doi.org/10.1007/s10904-013-9939-1

    Article  CAS  Google Scholar 

  10. Sarath PS et al (2020) Fabrication of exfoliated graphite reinforced silicone rubber composites - Mechanical, tribological and dielectric properties. Polym Test 89:106601. https://doi.org/10.1016/j.polymertesting.2020.106601

    Article  CAS  Google Scholar 

  11. Sarath PS, Moni G, George JJ, Haponiuk JT, Thomas S, George SC (2021) A study on the influence of reduced graphene oxide on the mechanical, dynamic mechanical and tribological properties of silicone rubber nanocomposites. J Compos Mater 55(15):2011–2024. https://doi.org/10.1177/0021998320981608

    Article  CAS  Google Scholar 

  12. Song Y et al (2015) Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets. Mater Des 88:950–957. https://doi.org/10.1016/j.matdes.2015.09.064

    Article  CAS  Google Scholar 

  13. Lingaraju D, Ramji K, Devi MP, Lakshmi UR (2011) Mechanical and tribological studies of polymer hybrid nanocomposites with nano reinforcements. 34(4)705–712

  14. Boldridge D (2010) Morphological characterization of fumed silica aggregates. Aerosol Sci Technol 44(3):182–186. https://doi.org/10.1080/02786820903499462

    Article  CAS  Google Scholar 

  15. Silva VP, Gonçalves MC, Yoshida IVP (2006) Biogenic silica short fibers as alternative reinforcing fillers of silicone rubbers. J Appl Polym Sci 101(1):290–299. https://doi.org/10.1002/app.23324

    Article  CAS  Google Scholar 

  16. Tangpong SXXW (2013) Review : Tribological behavior of polyethylene-based nanocomposites. 578–597. https://doi.org/10.1007/s10853-012-6844-x

  17. Ido T, Yamaguchi T, Shibata K, Matsuki K, Yumii K, Hokkirigawa K (2019) Sliding friction characteristics of styrene butadiene rubbers with varied surface roughness under water lubrication. Tribol Int. https://doi.org/10.1016/j.triboint.2019.01.015

    Article  Google Scholar 

  18. Yue Y, Zhang H, Zhang Z, Chen Y (2013) Polymer-filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber. Compos Sci Technol 86:1–8. https://doi.org/10.1016/j.compscitech.2013.06.019

    Article  CAS  Google Scholar 

  19. Luo YY, Wang YQ, Zhong JP, He CZ, Li YZ, Peng Z (2011) Interaction Between Fumed-Silica and Epoxidized Natural Rubber. J Inorg Organomet Polym Mater 21(4):777–783. https://doi.org/10.1007/s10904-011-9539-x

    Article  CAS  Google Scholar 

  20. Chen D, Liu Y, Huang C (2012) Synergistic effect between POSS and fumed silica on thermal stabilities and mechanical properties of room temperature vulcanized (RTV) silicone rubbers. Polym Degrad Stab 97(3):308–315. https://doi.org/10.1016/j.polymdegradstab.2011.12.016

    Article  CAS  Google Scholar 

  21. Siyuan Y, Jincheng W, Junhua W (2016) Investigation on the application properties of epoxy resin and glass fiber in RTV mold rubber. E-Polymers 16(6):437–445. https://doi.org/10.1515/epoly-2016-0188

    Article  CAS  Google Scholar 

  22. Abdelrahman EA (2018) Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. J Mol Liq 253(2017):72–82. https://doi.org/10.1016/j.molliq.2018.01.038

    Article  CAS  Google Scholar 

  23. Bagci C, Kutyla GP, Kriven WM (2017) Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative. Ceram Int 43(17):14784–14790. https://doi.org/10.1016/j.ceramint.2017.07.222

    Article  CAS  Google Scholar 

  24. Wang W et al (2012) Synthesis of silicon complexes from rice husk derived silica nanoparticles. RSC Adv 2(24):9036–9041. https://doi.org/10.1039/c2ra20986a

    Article  CAS  Google Scholar 

  25. Payne AR (1962) The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. J Appl Polym Sci 6(21):368–372. https://doi.org/10.1002/app.1962.070062115

    Article  CAS  Google Scholar 

  26. Wang LL, Zhang LQ, Tian M (2012) Mechanical and tribological properties of acrylonitrile-butadiene rubber filled with graphite and carbon black. Mater Des 39:450–457. https://doi.org/10.1016/j.matdes.2012.02.051

    Article  CAS  Google Scholar 

  27. Aranguren MI, Mora E, MacOsko CW (1997) Compounding fumed silicas into polydimethylsiloxane: Bound rubber and final aggregate size. J Colloid Interface Sci 195(2):329–337. https://doi.org/10.1006/jcis.1997.5143

    Article  PubMed  CAS  Google Scholar 

  28. Jana R, Mukunda P, Nando G (2003) Thermogravimetric analysis of compatibilized blends of low density polyethylene and poly(dimethyl siloxane) rubber. Polym Degrad Stab 80(1):75–82. https://doi.org/10.1016/s0141-3910(02)00385-3

    Article  CAS  Google Scholar 

  29. Wang S, Long C, Wang X, Li Q, Qi Z (1998) Synthesis and properties of silicone rubber/organomontmorillonite hybrid nanocomposites. J Appl Polym Sci 69(8):1557–1561. https://doi.org/10.1002/(sici)1097-4628(19980822)69:8%3c1557::aid-app10%3e3.3.co;2-8

    Article  CAS  Google Scholar 

  30. Friedrich K, Zhang Z, Schlarb AK (2005) Science and Effects of various fillers on the sliding wear of polymer composites. 65:2329–2343. https://doi.org/10.1016/j.compscitech.2005.05.028

  31. Jayashree P, Turani S, Straffelini G (2020) Effect of temperature and sliding speed on the dry sliding behavior of a SiC-graphite composite against martensitic steel,” Wear, vol. 450–451, no. February, 203242. https://doi.org/10.1016/j.wear.2020.203242

  32. Hemette S, Cayer-Barrioz J, Mazuyer D (2021) Thermal effects versus viscoelasticity in ice-rubber friction mechanisms. Tribol Int 162(no. June):107129. https://doi.org/10.1016/j.triboint.2021.107129

  33. Sarath PS, Reghunath R, Thomas S, Haponiuk JT, George SC (2021) An investigation on the tribological and mechanical properties of silicone rubber/graphite composites. J Compos Mater 55(26):3827–3838. https://doi.org/10.1177/00219983211031634

    Article  Google Scholar 

  34. Schallamach AGVGV (1953) The velocity and temperature dependence of rubber friction. Proc Physical Soc Section B 66(5):386

  35. Manoharan S, Suresha B, Bharath PB, Ramadoss G (2014) Investigations on Three-Body Abrasive Wear Behaviour of Composite Brake Pad Material. Plast Polym Technol 3. [Online]. Available: www.seipub.org/papt

  36. Dong CL, Yuan CQ, Bai XQ, Yan XP, Peng Z (2015) Tribological properties of aged nitrile butadiene rubber under dry sliding conditions $. Wear 322–323:226–237. https://doi.org/10.1016/j.wear.2014.11.010

    Article  CAS  Google Scholar 

  37. Mahesh V, Joladarashi S, Kulkarni SM (2021) Three body abrasive wear assessment of novel jute/natural rubber flexible green composite. J Thermoplast Compos Mater 1–11. https://doi.org/10.1177/08927057211017185

Download references

Acknowledgements

DRDO (Order No: ERIP/ER/1504758/M/01/1667), New Delhi, India, is greatly acknowledged for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soney C. George.

Ethics declarations

Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P.S, S., Prasad, V., Pahovnik, D. et al. Study the effect of fumed silica on the mechanical, thermal and tribological properties of silicone rubber nanocomposites. J Polym Res 29, 53 (2022). https://doi.org/10.1007/s10965-022-02905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02905-x

Keywords

Navigation