Skip to main content
Log in

The structure and properties of porous poly(tetrafluoroethylene)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Porous materials based on poly(tetrafluoroethylene) (PTFE) in a wide range of values of porosity (φ) 65 ÷ 90% have been formed by the method of leaching a porogen. The technological parameters required to produce PTFE materials of a spatially homogeneous porous structure have been determined. The mechanism of porous space formation has been proposed. The data characterizing the permeability of porous PTFE structures and the maximum effective diameters of the pore-connecting “interporous windows” have been obtained. The data for microhardness HSa for porous PTFE have been obtained. The temperature dependence of HSa was found to have a V-shaped valley in the region of the triclinic-hexagonal phase transition. However, the hexagonal – pseudo-hexagonal phase transition entails no features in the HSa (T) curves. It is shown that the estimation of HSa can be used as a check on the spatial homogeneity of a porous structure. The porous structure in the indentation area and its recovery after the indenter removal have been examined. The significance of temperature in the recovery process has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shiohara A, Prieto-Simon B, Voelcker NH (2021) Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B A 9(9):2129. https://doi.org/10.1039/d0tb01727b

    Article  CAS  Google Scholar 

  2. Slater AG, Cooper AI (2015) Function-led design of new porous materials. Science A 348(6238):aaa8075. https://doi.org/10.1126/science.aaa8075

    Article  CAS  Google Scholar 

  3. Wei Z, Ding B, Dou H, Gascon J, Kong X-J, Xiong Y, Cai B, Zhang R, Zhou Y, Long M, Miao J, Dou Y, Ding Y, Ma J (2019) 2020 roadmap on pore materials for energy and environmental applications. Chinese Chem Lett A 30:2010. https://doi.org/10.1016/j.cclet.2019.11.022

    Article  CAS  Google Scholar 

  4. Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D (2019) Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv Mater A 31(4):1802922. https://doi.org/10.1002/adma.201802922

    Article  CAS  Google Scholar 

  5. Babaie E, Bhaduri SB, Biomater ACS (2018) Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. Sci Eng A 4(1):1. https://doi.org/10.1021/acsbiomaterials.7b00615

    Article  CAS  Google Scholar 

  6. Gardiner J (2015) Fluoropolymers: Origin, Production, and Industrial and Commercial Applications. Aust J Chem A 68(1):13. https://doi.org/10.1071/ch14165

    Article  CAS  Google Scholar 

  7. Davis ME (2002) Ordered porous materials for emerging applications. Nature A 417:813. https://doi.org/10.1038/nature00785

    Article  CAS  Google Scholar 

  8. Siddiqui S, Coupy A, Tallon JM, Dumon M (2020) Facile fabrication of porous open-cell polymer structures from sacrificial “natural templates” and composite resins. J Porouse Mater A 27:1013. https://doi.org/10.1007/s10934-020-00878-0

    Article  CAS  Google Scholar 

  9. Yu S, Ng FL, Ma KCC, Mon AA, Ng FL, Ng YY (2012) Effect of porogenic solvent on the porous properties of polymer monoliths. J Appl Polym Sci A 127(4):2641. https://doi.org/10.1002/app.37514

    Article  CAS  Google Scholar 

  10. Stucki M, Loepfe M, Stark WJ (2018) Porous Polymer Membranes by Hard Templating – A Review. Adv Eng Mater A 20(1):1700611. https://doi.org/10.1002/adem.201700611

    Article  CAS  Google Scholar 

  11. Janik H, Marzec M (2015) A review: Fabrication of porous polyurethane scaffolds. Mater Sci Eng C Mater Biol Appl A 48(1):586. https://doi.org/10.1016/j.msec.2014.12.037

    Article  CAS  Google Scholar 

  12. Feng S, Zhong Z, Wang Y, Xing W, Drioli E (2018) Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J Membrane Sci A 549:332. https://doi.org/10.1016/j.memsci.2017.12.032

    Article  CAS  Google Scholar 

  13. Chernyshev LI, Balitskii ON, Fedorova NE, Get’man OI, Yur’ev VM (2004) Porous Permeable Polymers. Powder Metall Met C+ A 43:143. https://doi.org/10.1023/B:PMMC.0000035702.20726.53

    Article  CAS  Google Scholar 

  14. Mane S (2016) Effect of Porogens ( Type and Amount ) on Polymer Porosity : A Review. Can Chem Trans A 4(2):210. https://doi.org/10.13179/canchemtrans.2016.04.02.0304

    Article  CAS  Google Scholar 

  15. Chevalier E, Chulia D, Pouget C, Viana M (2008) Fabrication of porous substrates: A review of processes using pore forming agents in the biomaterial field. J Pharm Sci A 97:1135. https://doi.org/10.1002/jps.21059

    Article  CAS  Google Scholar 

  16. Kalyuzhny AB, Karpova TL, Kalyuzhny BG, Platkov VY (1999) High porosity tetrafluroethylene polymer for water separation from diesel fuel. Funct Mater A 6:25. http://functmaterials.org.ua/contents/9-2/19.pdf

  17. Suhaimin IS, Zubir SA, Abdullah TK (2018) Effect of Leaching Agent Composition on Morphology, Thermal and Mechanical Properties of Bioglass® Reinforced Polyurethane Scaffold. Int J Cur Res Eng Sci Tech A 1:19. https://doi.org/10.30967/ijcrset.1.S1.2018.19-27

    Article  Google Scholar 

  18. Zhao YY (2003) Stochastic Modelling of Removability of NaCl in Sintering and Dissolution Process to Produce Al Foams. J Porouse Mater A 10:105. https://doi.org/10.1023/A:1026079612440

    Article  CAS  Google Scholar 

  19. Pal K, Bag S, Pal S (2008) Development of porous ultra high molecular weight polyethylene scaffolds for the fabrication of orbital implant. J Porouse Mater A 15:53. https://doi.org/10.1007/s10934-006-9051-9

    Article  CAS  Google Scholar 

  20. Maksimkin AV, Kaloshkin SD, Tcherdyntsev VV, Chukov DI, Stepashkin AA (2013) Technologies for Manufacturing Ultrahigh Molecular Weight Polyethylene-Based Porous Structures for Bone Implants. Biomed Eng A 47:73. https://doi.org/10.1007/s10527-013-9338-5

    Article  Google Scholar 

  21. Kaliuzhnyi OB, Platkov VY (2020) Formation of Porous Poly(tetrafluoroethylene) Using a Partially Gasified Porogen. Iran J Mater Sci Eng A 17(2):13 https://doi.org/10.22068/ijmse.17.2.13

    Google Scholar 

  22. Hogg R (2009) Mixing and Segregation in Powders: Evaluation, Mechanisms and Processes. Kona Powder Part J A 27:3. https://doi.org/10.14356/kona.2009005

    Article  Google Scholar 

  23. Anovitz LM, Cole DR (2015) Characterization and Analysis of Porosity and Pore Structures. Rev Mineral Geochem 80(1):61. https://doi.org/10.2138/rmg.2015.80.04

    Article  Google Scholar 

  24. ASTM F316–03 (2019) Standard test methods for pore size characteristics of membrane filters by bubble point and mean flow pore test

  25. ISO 868 (2003) Plastics and ebonite — Determination of indentation hardness by means of a durometer (Shore hardness)

  26. Brown EN, Trujillo CP, Gray GT, Rae PJ, Bourne NK (2007) Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II-III transition. J Appl Phys A 101:024916. https://doi.org/10.1063/1.2424536

    Article  CAS  Google Scholar 

  27. Wang H-X, Fang X, Feng B, Gao Z-R, Wu S-Z, Li Y-C (2018) Influence of Temperature on the Mechanical Properties and Reactive Behavior of Al-PTFE under Quasi-Static Compression. Polymers A 10(1):56. https://doi.org/10.3390/polym10010056

    Article  CAS  Google Scholar 

  28. Brown EN, Dattelbaum DM, Brown DW, Rae PJ, Clausen B (2007) A new strain path to inducing phase transitions in semi-crystalline polymers. Polymer A 48(9):2531. https://doi.org/10.1016/j.polymer.2007.03.031

    Article  CAS  Google Scholar 

  29. Rae PJ, Brown EN (2005) The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer A 46(19):8128. https://doi.org/10.1016/j.polymer.2005.06.120

    Article  CAS  Google Scholar 

  30. Drobny JG (2008) Technology of fluoropolimers. (CRC Press Taylor & Francis Group, 2008) 250 p

  31. Guenoun G, Faou J-Y, Ragnier G, Schmitt N, Roux S (2020) PTFE crystallization mechanisms: Insight from calorimetric and dilatometric experiments. Polymer A 193:122333. https://doi.org/10.1016/j.polymer.2020.122333

    Article  CAS  Google Scholar 

  32. Conrad TL, Roeder RK (2020) Effects of porogen morphology on the architecture, permeability, and mechanical properties of hydroxyapatite whisker reinforced polyetheretherketone scaffolds. J Mech Behave Biomed Meter A 106:103730. https://doi.org/10.1016/j.jmbbm.2020.103730

    Article  CAS  Google Scholar 

  33. Antonyuk S, Heinrich S, Tomas J, Deen NG, van Buijtenen MS, Kuipers JAM (2010) Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granular Matter A 12(1):15. https://doi.org/10.1007/s10035-009-0161-3

    Article  CAS  Google Scholar 

  34. Yu J, Hu X, Huang Y (2010) A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials. Sep Purif Technol 70(3):314. https://doi.org/10.1016/j.seppur.2009.10.013

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii B. Kaliuzhnyi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliuzhnyi, O.B., Platkov, V.Y. The structure and properties of porous poly(tetrafluoroethylene). J Polym Res 29, 32 (2022). https://doi.org/10.1007/s10965-022-02887-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02887-w

Keywords

Navigation