Skip to main content
Log in

Effect of Fe3O4 nanoparticles on magneto-responsive shape memory behavior of polyurethane-carbon nanotube nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Magnetically-sensitive shape memory materials have attracted significant attention during recent decades, especially in biomedical applications, due to the noncontact triggering nature of their process. In the current study, Fe3O4 ceramic nanoparticles were deposited on the carbon nanotubes surface by an in situ chemical co-precipitation method in an alkaline solution. Then, the effect of incorporating these ceramic nanoparticles on the magnetic shape memory behavior of polyurethane-carbon nanotube nanocomposites has been studied up to 10wt% CNTs/Fe3O4. Other mechanical, thermal, and morphological tests were also performed on the fabricated nanocomposites, such as tensile, TGA, DTGA, DMTA, SEM, and TEM. A new model was finally obtained on the shape memory behavior of this composite. The obtained results showed that the magnetic hysteresis loops of PU-5%(CNTs/Fe3O4) and PU-10%(CNTs/Fe3O4) samples exhibited ferrimagnetism with the saturation magnetization of 2.9 and 4.6 emu.g−1 with respect to nonmagnetic polyurethane property and the best magnetic shape recovery result was obtained for PU-10%(CNTs/Fe3O4) nanocomposite. Finally, recovery stress was measured to be increased by 111% with the incorporation of CNTs/Fe3O4, and a modified Halpin–Tsai equation was derived with the correction factor of K = exp(-2.079–89.5Vf) to predict recovery stress of PU-CNTs/Fe3O4 nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  CAS  Google Scholar 

  2. Arnebold A, Hartwig A (2016) Fast switchable, epoxy based shape-memory polymers with high strength and toughness. Polymer 83:40–49

    Article  CAS  Google Scholar 

  3. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  CAS  Google Scholar 

  4. Luo H, Zhou X, Ma Y, Yi G, Cheng X, Zhu Y, Zu X, Zhang N, Huang B, Yu L (2016) Shape memory-based tunable resistivity of polymer composites. Appl Surf Sci 363:59–65

    Article  CAS  Google Scholar 

  5. Sujithra R, Srinivasan S, Arockiarajan A (2015) Shape recovery studies for coupled deformations in an epoxy based amorphous shape memory polymers. Polym Test 48:1–6

    Article  CAS  Google Scholar 

  6. Baker RM, Tseng L-F, Iannolo MT, Oest ME, Henderson JH (2016) Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study. Biomaterials 76:388–398

    Article  CAS  Google Scholar 

  7. Guo J, Wang Z, Tong L, Lv H, Liang W (2015) Shape memory and thermo-mechanical properties of shape memory polymer/carbon fiber composites. Compos Part A: Appl Sci Manufact 76:162–171

    Article  CAS  Google Scholar 

  8. Guo J, Wang Z, Tong L, Liang W (2016) Effects of short carbon fibres and nanoparticles on mechanical, thermal and shape memory properties of SMP hybrid nanocomposites. Compos Part B: Eng 90:152–159

    Article  CAS  Google Scholar 

  9. Du H, Liu L, Leng J, Peng H, Scarpa F, Liu Y (2015) Shape memory polymer S-shaped mandrel for composite air duct manufacturing. Compos Struct 133:930–938

    Article  Google Scholar 

  10. Delaey J, Dubruel P, Van Vlierberghe S (2020) Shape-Memory Polymers for Biomedical Applications. Adv Funct Mater 30:1909047

    Article  CAS  Google Scholar 

  11. Gu S, Yan B, Liu L, Ren J (2013) Carbon nanotube–polyurethane shape memory nanocomposites with low trigger temperature. Eur Polym J 49:3867–3877

    Article  CAS  Google Scholar 

  12. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  CAS  Google Scholar 

  13. Xu Y, Chen D (2018) Shape memory-assisted self-healing polyurethane inspired by a suture technique. J Mater Sci 53:10582–10592

    Article  CAS  Google Scholar 

  14. Cai Y, Jiang J-S, Liu Z-W, Zeng Y, Zhang W-G (2013) Magnetically-sensitive shape memory polyurethane composites cross-linked with multi-walled carbon nanotubes. Compos Part A: Appl Sci Manufact 53:16–23

    Article  CAS  Google Scholar 

  15. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  CAS  Google Scholar 

  16. Lee H-F, Yu HH (2011) Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 7:3801–3807

    Article  CAS  Google Scholar 

  17. Luo X, Mather PT (2010) Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6:2146–2149

    Article  CAS  Google Scholar 

  18. Lu H, Liu Y, Gou J, Leng J, Du S (2010) Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Appl Phys Lett 96:084102

  19. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  CAS  Google Scholar 

  20. Kumar UN, Kratz K, Heuchel M, Behl M, Lendlein A (2011) Shape-Memory Nanocomposites with Magnetically Adjustable Apparent Switching Temperatures. Adv Mater 23:4157–4162

    Article  CAS  Google Scholar 

  21. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proceed National Academy Sci 103:3540–3545

    Article  CAS  Google Scholar 

  22. Hiergeist R, Andrä W, Buske N, Hergt R, Hilger I, Richter U, Kaiser W (1999) Application of magnetite ferrofluids for hyperthermia. J Magn Magn Mater 201:420–422

    Article  CAS  Google Scholar 

  23. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. Journal Magn Magnc Mater 252:370–374

    Article  CAS  Google Scholar 

  24. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444:227–235

    Article  Google Scholar 

  25. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  CAS  Google Scholar 

  26. Weidenfeller B, Höfer M, Schilling F (2002) Thermal and electrical properties of magnetite filled polymers. Compos Part A: Appl Sci Manufact 33:1041–1053

    Article  Google Scholar 

  27. Melly SK, Liu L, Liu Y, Leng J (2020) Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects. J Mater Sci 55:10975–11051

    Article  CAS  Google Scholar 

  28. Naito Y, Nishikawa M, Hojo M (2015) Effect of reinforcing layer on shape fixity and time-dependent deployment in shape-memory polymer textile composites. Compos Part A: Appl Sci Manufact 76:316–325

    Article  CAS  Google Scholar 

  29. Chen J, Zhang Z-X, Huang W-B, Yang J-H, Wang Y, Zhou Z-W, Zhang J-H (2015) Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater Des 69:105–113

    Article  CAS  Google Scholar 

  30. Zhuo S, Liu Y, Zhou L, Feng X (2018) Enhanced dual-responsive shape memory nanocomposites with rapid and efficient self-healing capability. J Mater Sci 53:13936–13948

    Article  CAS  Google Scholar 

  31. Fonseca M, Abreu B, Gonçalves F, Ferreira A, Moreira R, Oliveira M (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99:105–111

    Article  Google Scholar 

  32. Moghim MH, Zebarjad SM (2016) Effect of strain rate on tensile properties of polyurethane/(multi-walled carbon nanotube) nanocomposite. J Vinyl Add Technol 22:356–361

    Article  CAS  Google Scholar 

  33. Moghim MH, Zebarjad SM (2017) Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites. Polym Bull 74:4267–4277

    Article  CAS  Google Scholar 

  34. Keshavarz M, Zebarjad SM, Daneshmanesh H, Moghim M (2017) On the role of TiO2 nanoparticles on thermal behavior of flexible polyurethane foam sandwich panels. J Therm Anal Calorim 127:2037–2048

    Article  CAS  Google Scholar 

  35. Moghim MH, Keshavarz M, Zebarjad SM (2018) Effect of SiO2 nanoparticles on compression behavior of flexible polyurethane foam. Polym Bull 76:227–239

    Article  Google Scholar 

  36. Zhang C-S, Ni Q-Q (2007) Bending behavior of shape memory polymer based laminates. Compos Struct 78:153–161

    Article  Google Scholar 

  37. Deka H, Karak N, Kalita RD, Buragohain AK (2010) Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48:2013–2022

    Article  CAS  Google Scholar 

  38. Moghim MH, Zebarjad SM (2015) Fabrication and structural characterization of multi-walled carbon nanotube/Fe 3 O 4 nanocomposite. J Inorgan Organometall Polym Mater 25:1260–1266

    Article  CAS  Google Scholar 

  39. Moghim MH, Zebarjad SM, Eqra R (2018) Experimental and modeling investigation of shape memory behavior of polyurethane/carbon nanotube nanocomposite. Polym Adv Technol 29:2496–2504

    Article  CAS  Google Scholar 

  40. Xiao X, Hu J (2016) Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Sci rep 6:1–12

    Article  Google Scholar 

  41. Xiao X, Hu J, Gui X, Lu J, Luo H (2017) Is biopolymer hair a multi-responsive smart material? Polym Chem 8:283–294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hadi Moghim.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghim, M.H., Zebarjad, S.M. & Eqra, R. Effect of Fe3O4 nanoparticles on magneto-responsive shape memory behavior of polyurethane-carbon nanotube nanocomposites. J Polym Res 29, 28 (2022). https://doi.org/10.1007/s10965-021-02880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02880-9

Keywords

Navigation