Skip to main content

Advertisement

Log in

Synergic effect of PVP and PEG hydrophilic additives on porous polyethersulfone (PES) membranes: preparation, characterization and biocompatibility

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The objective of the study is to develop speciality polymeric membranes based on polyethersulfone (PES) by phase inversion method and analyzing the synergic effect of hydrophilic polymers polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) on membrane properties. Various formulations were developed for evaluating the hydrophilicity, morphology, thermal behaviour, cytocompatibility and hemocompatibility of membranes. Morphology studies revealed the variations in pore size, uniform porosity and surface roughness correlation of samples with different coagulation conditions and additive concentration. The tailoring of porosity and optimization of membranes with excellent biocompatibility were achieved by this study. Hemocompatibility of the optimized formulations were confirmed by protein adsorption, platelet adhesion and blood coagulation time. A significant reduction of protein adsorption to 96 ± 3.5 ng/cm2 compared to pristine PES membrane (257 ± 5 ng/cm2) and an excellent increase in blood clotting time to 166.5 ± 2 s compared to the control sample (37 s) were achieved. Developed membranes show good hydrophilicity (64.14 ± 1.54 °C) and better cytocompatibility was observed. The high temperature performance was measured using thermogravimetric analysis which exhibited high heat resistance around 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ismail AF, Hassan AR (2007) Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes. Sep Purif Technol 55:98–109. https://doi.org/10.1016/j.seppur.2006.11.002

    Article  CAS  Google Scholar 

  2. Alvi MAUR, Khalid MW, Ahmad NM, Niazi MBK, Anwar MN, Batool M, Cheema W, Rafiq S (2019) Polymer Concentration and Solvent Variation Correlation with the Morphology and Water Filtration Analysis of Polyether Sulfone Microfiltration Membrane. Adv Polym Technol 2019:1–11. https://doi.org/10.1155/2019/8074626

    Article  CAS  Google Scholar 

  3. Fahmi MZ, Wathoniyyah M, Khasanah M, Rahardjo Y, Wafiroh S (2018) Abdulloh, RSC Advances Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance. RSC Adv 8:931–937. https://doi.org/10.1039/c7ra11247e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Otitoju TA, Ahmad AL, Ooi BS (2018) RSC Advances Recent advances in hydrophilic modi fi cation and performance of polyethersulfone ( PES ) membrane via additive blending. RSC Adv 8:22710–22728. https://doi.org/10.1039/c8ra03296c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu Z, Qusay FA (2004) Polyethersulfone ( PES ) hollow fiber ultrafiltration membranes prepared by PES / non-solvent / NMP solution. J Memb Sci 233:101–111. https://doi.org/10.1016/j.memsci.2004.01.005

    Article  CAS  Google Scholar 

  6. Ismail AF, Hassan AR (2007) Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone ( PES ) nanofiltration membranes. Sep Purif Technol 55:98–109. https://doi.org/10.1016/j.seppur.2006.11.002

    Article  CAS  Google Scholar 

  7. Xu Z, Qusay FA (2003) Effect of Polyethylene Glycol Molecular Weights and Concentrations on Polyethersulfone Hollow Fiber Ultrafiltration Membranes

  8. Smolders CA, Reuvers AJ, Boom RM, Wienk IM (1992) Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J Memb Sci 73:259–275

  9. Pinnau I, Koros WJ (n.d.) Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion 1491–1502

  10. Wang L, He M, Gong T, Zhang X, Zhang L, Liu T, Ye W, Pan C, Zhao C (2017) Introducing multiple bio-functional groups on poly (ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. Biomater Sci 5:2416–2426. https://doi.org/10.1039/C7BM00673J

    Article  CAS  PubMed  Google Scholar 

  11. Roy A, De S (2017) State-of-the-art materials and spinning technology for hemodialyzer membranes. Sep Purif Rev 46:216–240. https://doi.org/10.1080/15422119.2016.1256323

    Article  CAS  Google Scholar 

  12. ter Beek OEM, Pavlenko D, Stamatialis D (2020) Hollow fiber membranes for long-term hemodialysis based on polyethersulfone-SlipSkinTM polymer blends. J Memb Sci 604:118068. https://doi.org/10.1016/j.memsci.2020.118068

    Article  CAS  Google Scholar 

  13. Wang J, Qiu M, He C (2020) A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 606:118119. https://doi.org/10.1016/j.memsci.2020.118119

    Article  CAS  Google Scholar 

  14. Otitoju TA, Ooi BS, Ahmad AL (2019) Synthesis of 3-aminopropyltriethoxysilane-silica modified polyethersulfone hollow fiber membrane for oil-in-water emulsion separation. React Funct Polym 136:107–121. https://doi.org/10.1016/j.reactfunctpolym.2018.12.018

    Article  CAS  Google Scholar 

  15. Rowley J, Abu-zahra NH (2019) Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane ) APTES-Fe 3 O 4 nanoparticles for As ( V ) removal from water. J Environ Chem Eng 7:102875. https://doi.org/10.1016/j.jece.2018.102875

    Article  CAS  Google Scholar 

  16. Ran F (2020) Encyclopedia of membranes. In: DE, GL (eds.), Encycl Membr, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40872-4

  17. Abidin MNZ, Goh PS, Ismail AF, Othman MHD, Hasbullah H, Said N, Kadir SHSA, Kamal F, Abdullah MS, Ng BC (2016) Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes. Mater Sci Eng C 68:540–550. https://doi.org/10.1016/j.msec.2016.06.039

    Article  CAS  Google Scholar 

  18. Liu M, Wei Y, Xu Z, Guo R, Zhao L (2013) Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system. J Memb Sci 437:169–178. https://doi.org/10.1016/j.memsci.2013.03.004

    Article  CAS  Google Scholar 

  19. Teimoori M, Hashemifard SA, Ismail AF, Abbasi M (2017) The impact of nonpolar coagulation bath-immiscible liquid additives on the polyethersulfone membranes structure and performance. J Appl Polym Sci 134:1–12. https://doi.org/10.1002/app.44509

    Article  CAS  Google Scholar 

  20. Eren E, Sarihan A, Eren B, Gumus H, Kocak FO (2015) Preparation, characterization and performance enhancement of polysulfone ultra fi ltration membrane using PBI as hydrophilic modifier. J Memb Sci 475:1–8. https://doi.org/10.1016/j.memsci.2014.10.010

    Article  CAS  Google Scholar 

  21. Peydayesh M, Bagheri M, Mohammadi T, Bakhtiari O (2017) Fabrication optimization of polyethersulfone (PES)/ polyvinylpyrrolidone (PVP) nanofiltration membranes using Box-Behnken response surface method. RSC Adv 7:24995–25008. https://doi.org/10.1039/c7ra03566g

    Article  CAS  Google Scholar 

  22. Particle Size Chart: Removal Range by Filtration, H2O Distrib. (n.d.) 1. https://www.h2odistributors.com/pages/info/diagram-particle-sizes.asp

  23. Mansur S, Othman MHD, Ismail AF, Zainol Abidin MN, Said N, Sean GP, Hasbullah H, Sheikh Abdul Kadir SH, Kamal F (20185) Study on the effect of spinning conditions on the performance of PSf/PVP ultrafiltration hollow fiber membrane, Malaysian. J Fundam Appl Sci 14:343–347. https://doi.org/10.11113/mjfas.v14n3.1215

  24. Davis RH (2019) Microfiltration in pharmaceutics and biotechnology. In: Curr Trends Futur Dev Membr Membr Process Pharm Biotechnol F, Elsevier Inc., pp 29–67. https://doi.org/10.1016/B978-0-12-813606-5.00002-6

  25. Saha N, Shah R, Gupta P, Mandal BB, Alexandrova R, Sikiric MD, Saha P (2019) PVP - CMC Hydrogel: An Excellent Bioinspired and Biocompatible Scaffold for Osseointegration. Mater Sci Eng C 95:440–449. https://doi.org/10.1016/j.msec.2018.04.050

    Article  CAS  Google Scholar 

  26. Kappert EJ, Raaijmakers MJT, Tempelman K, Cuperus FP, Ogieglo W, Benes NE (2019) Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset. J Memb Sci 569:177–199. https://doi.org/10.1016/j.memsci.2018.09.059

    Article  CAS  Google Scholar 

  27. Panda SR, De S (2014) Preparation, characterization and performance of ZnCl2 incorporated polysulfone (PSF)/polyethylene glycol (PEG) blend low pressure nanofiltration membranes Swapna. Desalination 347:52–65. https://doi.org/10.1016/j.desal.2014.05.030

    Article  CAS  Google Scholar 

  28. Qiu QQ, Sun WQ, Connor J (2017) Sterilization of biomaterials of synthetic and biological origin. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-803581-8.10186-9

    Article  Google Scholar 

  29. Perng L (2001) Comparison of Thermal Degradation Characteristics of Poly ( arylene sulfone ) s Using Thermogravimetric Analysis / Mass Spectrometry. J Appl Polym Sci 81:2387–2398. https://doi.org/10.1002/app.1679

    Article  CAS  Google Scholar 

  30. Activated Partial Thromboplastin Clotting Time (2019) Heal Encycl Univ Rochester Med Cente 1–3. https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=aptt

  31. Abidin MNZ, Goh PS, Ismail AF, Othman MHD, Hasbullah H, Said N, Kadir SHSA, Kamal F, Abdullah MS, Ng BC (2017) Development of biocompatible and safe polyethersulfone hemodialysis membrane incorporated with functionalized multi-walled carbon nanotubes. Mater Sci Eng C 77:572–582. https://doi.org/10.1016/j.msec.2017.03.273

    Article  CAS  Google Scholar 

  32. Julien L. Van Lancker (1976) Chapter 7, Blood Coagulation. In: Molecular and Cellular Mechanisms in Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65967-6_7

  33. Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703. https://doi.org/10.1016/B978-008045154-1.50025-3

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Bauer J, Siedlecki CA (2014) Proteins. Platelets, and Blood Coagulation at Biomaterial Interfaces, Colloids Surfaces B Biointerfaces 124:49–68. https://doi.org/10.1016/j.colsurfb.2014.09.040

    Article  CAS  PubMed  Google Scholar 

  35. Sun C, Ji H, Qin H, Nie S, Zhao W, Zhao C (2015) A facile approach toward multifunctional polyethersulfone membranes via in situ cross-linked copolymerization. J Biomater Sci Polym Ed 26:1013–1034. https://doi.org/10.1080/09205063.2015.1071929

    Article  CAS  PubMed  Google Scholar 

  36. Salimi E, Ghaee A, Ismail AF, Ghaee A, Ismail AF (2018) Anti-thrombogenicity and permeability of polyethersulfone hollow fiber membrane with sulfonated alginate toward blood purification. Int J Biol Macromol 116:364–377. https://doi.org/10.1016/j.ijbiomac.2018.04.137

    Article  CAS  PubMed  Google Scholar 

  37. Präbst K, Engelhardt H, Ringgeler S, Hübner H (2017) Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. In: Cell Viability Assays, Humana Press, New York, pp. 1–17. https://doi.org/10.1007/978-1-4939-6960-9

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the Centre of Excellence (CoE) Department of Chemicals and Petrochemicals (DCPC) Government of India (grant no. 25014/2/2015-PC-II). Department of Chemicals and Petrochemicals,Ministry of Chemicals and Fertilizers,25014/2/2015-PC-II

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athira V. B..

Ethics declarations

Conflicts of interests

The authors state no possible conflicts of interest with respect to the research work done, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10625 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

V. B., A., Mohanty, S. & Nayak, S.K. Synergic effect of PVP and PEG hydrophilic additives on porous polyethersulfone (PES) membranes: preparation, characterization and biocompatibility. J Polym Res 29, 266 (2022). https://doi.org/10.1007/s10965-021-02868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02868-5

Keywords

Navigation