Skip to main content
Log in

Asymmetric and bi-continuously structured polyethersulfone (PES) membranes with superior water flux for ultrafiltration application

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L•m−2 h−1 and a BSA rejection of 91%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes - A review of methods. Prog Mater Sci 58:76–150. https://doi.org/10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  2. Baker RW (2012) Membrane technology and applications. John Wiley & Sons

    Book  Google Scholar 

  3. Ho C-C, Su JF, Cheng L-P (2021) Fabrication of high-flux asymmetric polyethersulfone (PES) ultrafiltration membranes by nonsolvent induced phase separation process: Effects of H2O contents in the dope. Polymer 217:123451. https://doi.org/10.1016/j.polymer.2021.123451

    Article  CAS  Google Scholar 

  4. Zareei F, Hosseini SM (2019) A new type of polyethersulfone based composite nanofiltration membrane decorated by cobalt ferrite-copper oxide nanoparticles with enhanced performance and antifouling property. Sep Purif Technol 226:48–58. https://doi.org/10.1016/j.seppur.2019.05.077

    Article  CAS  Google Scholar 

  5. Kim JF, Kim JH, Lee YM, Drioli E (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE J 62:461–490. https://doi.org/10.1002/aic.15076

    Article  CAS  Google Scholar 

  6. Alexowsky C, Bojarska M, Ulbricht M (2019) Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation. J Membr Sci 577:69–78. https://doi.org/10.1016/j.memsci.2019.01.033

    Article  CAS  Google Scholar 

  7. Tomietto P, Carré M, Loulergue P et al (2020) Polyhydroxyalkanoate (PHA) based microfiltration membranes: Tailoring the structure by the non-solvent induced phase separation (NIPS) process. Polymer 204:122813. https://doi.org/10.1016/j.polymer.2020.122813

    Article  CAS  Google Scholar 

  8. Abdel-Karim A, Gad-Allah TA, El-Kalliny AS et al (2017) Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor. Sep Purif Technol 175:36–46. https://doi.org/10.1016/j.seppur.2016.10.060

    Article  CAS  Google Scholar 

  9. Algamdi MS, Alsohaimi IH, Lawler J et al (2019) Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal. Sep Purif Technol 223:17–23. https://doi.org/10.1016/j.seppur.2019.04.057

    Article  CAS  Google Scholar 

  10. Chang C-C, Beltsios KG, Lin J-D, Cheng L-P (2020) Nano-titania/polyethersulfone composite ultrafiltration membranes with optimized antifouling capacity. J Taiwan Inst Chem Eng 3486. https://doi.org/10.1016/j.jtice.2020.07.019

  11. Ghaemi N, Madaeni SS, Alizadeh A et al (2012) Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: Characterization and performance in rejection of pesticides. Desalination 290:99–106. https://doi.org/10.1016/j.desal.2012.01.013

    Article  CAS  Google Scholar 

  12. Rajabi H, Ghaemi N, Madaeni SS et al (2015) Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 349:66–77. https://doi.org/10.1016/j.apsusc.2015.04.214

    Article  CAS  Google Scholar 

  13. al Malek SA, Abu Seman MN, Johnson D, Hilal N, (2012) Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone. Desalination 288:31–39. https://doi.org/10.1016/j.desal.2011.12.006

    Article  CAS  Google Scholar 

  14. Vatsha B, Ngila JC, Moutloali RM (2014) Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification. Phys Chem Earth Parts A/B/C 67–69:125–131. https://doi.org/10.1016/j.pce.2013.09.021

    Article  Google Scholar 

  15. Yoo SH, Kim JH, Jho JY et al (2004) Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight. J Membr Sci 236:203–207. https://doi.org/10.1016/j.memsci.2004.02.017

    Article  CAS  Google Scholar 

  16. Dang HT, Narbaitz RM, Matsuura T, Khulbe KC (2006) A Comparison of Commercial and Experimental Ultrafiltration Membranes via Surface Property Analysis and Fouling Tests. Water Qual Res J 41:84–93. https://doi.org/10.2166/wqrj.2006.009

    Article  CAS  Google Scholar 

  17. Li D, Sun X, Gao C, Dong M (2020) Improved water flux and antifouling properties of cardo poly(aryl ether ketone) ultrafiltration membrane by novel sulfobetaine polyimides additive. Sep Purif Technol 251:117144. https://doi.org/10.1016/j.seppur.2020.117144

    Article  CAS  Google Scholar 

  18. Gholami F, Zinadini S, Zinatizadeh AA, Abbasi AR (2018) TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane. Sep Purif Technol 194:272–280. https://doi.org/10.1016/j.seppur.2017.11.054

    Article  CAS  Google Scholar 

  19. Gao H, Sun X, Gao C (2017) Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection. J Membr Sci 542:81–90. https://doi.org/10.1016/j.memsci.2017.07.053

    Article  CAS  Google Scholar 

  20. Kong S, Lim M, Shin H et al (2020) High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications. J Ind Eng Chem 84:131–140. https://doi.org/10.1016/j.jiec.2019.12.028

    Article  CAS  Google Scholar 

  21. Alaei Shahmirzadi MA, Hosseini SS, Ruan G, Tan NR (2015) Tailoring PES nanofiltration membranes through systematic investigations of prominent design, fabrication and operational parameters. RSC Adv 5:49080–49097. https://doi.org/10.1039/C5RA05985B

    Article  CAS  Google Scholar 

  22. McKelvey SA, Koros WJ (1996) Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes. J Membr Sci 112:29–39. https://doi.org/10.1016/0376-7388(95)00197-2

    Article  CAS  Google Scholar 

  23. Zhang L, Cui Z, Hu M et al (2017) Preparation of PES/SPSf blend ultrafiltration membranes with high performance via H2O-induced gelation phase separation. J Membr Sci 540:136–145. https://doi.org/10.1016/j.memsci.2017.06.044

    Article  CAS  Google Scholar 

  24. Kim JH, Min BR, Park HC et al (2001) Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion. J Appl Polym Sci 81:3481–3488. https://doi.org/10.1002/app.1804

    Article  CAS  Google Scholar 

  25. Rahimpour A, Jahanshahi M, Khalili S et al (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107. https://doi.org/10.1016/j.desal.2011.10.039

    Article  CAS  Google Scholar 

  26. Hossein Razzaghi M, Safekordi A, Tavakolmoghadam M et al (2014) Morphological and separation performance study of PVDF/CA blend membranes. J Membr Sci 470:547–557. https://doi.org/10.1016/j.memsci.2014.07.026

    Article  CAS  Google Scholar 

  27. Lang W-Z, Shen J-P, Zhang Y-X et al (2013) Preparation and characterizations of charged poly(vinyl butyral) hollow fiber ultrafiltration membranes with perfluorosulfonic acid as additive. J Membr Sci 430:1–10. https://doi.org/10.1016/j.memsci.2012.10.039

    Article  CAS  Google Scholar 

  28. Kim IC, Choi JG, Tak TM (1999) Sulfonated polyethersulfone by heterogeneous method and its membrane performances. J Appl Polym Sci 74:2046–2055. https://doi.org/10.1002/(SICI)1097-4628(19991121)74:8%3c2046::AID-APP20%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  29. Borodko Y, Habas SE, Koebel M et al (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV - Raman and FTIR. J Phys Chem B 110:23052–23059. https://doi.org/10.1021/jp063338

    Article  CAS  PubMed  Google Scholar 

  30. Qian XF, Yin J, Feng S et al (2001) Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles. J Mater Chem 11:2504–2506. https://doi.org/10.1039/b103708k

    Article  CAS  Google Scholar 

  31. Yuliwati E, Ismail AF, Matsuura T et al (2011) Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation. Desalination 283:206–213. https://doi.org/10.1016/j.desal.2011.02.037

    Article  CAS  Google Scholar 

  32. Huang J, Zhang K, Wang K et al (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423–424:362–370. https://doi.org/10.1016/j.memsci.2012.08.029

    Article  CAS  Google Scholar 

  33. Rohani R, Hyland M, Patterson D (2011) A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols. J Membr Sci 382:278–290. https://doi.org/10.1016/j.memsci.2011.08.023

    Article  CAS  Google Scholar 

  34. Singh S, Khulbe KC, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142:111–127. https://doi.org/10.1016/S0376-7388(97)00329-3

    Article  CAS  Google Scholar 

  35. Zhang S, Liu Y, Li D et al (2020) Water-soluble MOF nanoparticles modified polyethersulfone membrane for improving flux and molecular retention. Appl Surf Sci 505:144553. https://doi.org/10.1016/j.apsusc.2019.144553

    Article  CAS  Google Scholar 

  36. Wu L, Sun J, Wang Q (2006) Poly(vinylidene fluoride)/polyethersulfone blend membranes: Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. J Membr Sci 285:290–298. https://doi.org/10.1016/j.memsci.2006.08.033

    Article  CAS  Google Scholar 

  37. Kusworo TD, Widayat W, Utomo DP et al (2020) Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification. Renew Energy 148:935–945. https://doi.org/10.1016/j.renene.2019.10.177

    Article  CAS  Google Scholar 

  38. Zhang DY, Liu J, Shi YS et al (2016) Antifouling polyimide membrane with surface-bound silver particles. J Membr Sci 516:83–93. https://doi.org/10.1016/j.memsci.2016.06.012

    Article  CAS  Google Scholar 

  39. Pan Y, Yu Z, Shi H et al (2017) A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/SiO2 nanocomposites. J Chem Technol Biotechnol 92:562–572. https://doi.org/10.1002/jctb.5034

    Article  CAS  Google Scholar 

  40. Yu W, Liu Y, Shen L et al (2020) Magnetic field assisted preparation of PES-Ni@MWCNTs membrane with enhanced permeability and antifouling performance. Chemosphere 243:125446. https://doi.org/10.1016/j.chemosphere.2019.125446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support by the Ministry of Science and Technology, Taiwan (109-2221-E-032 -040 -MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenn Fang Su.

Ethics declarations

Conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10625 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CC., Yu, ST., Su, J.F. et al. Asymmetric and bi-continuously structured polyethersulfone (PES) membranes with superior water flux for ultrafiltration application. J Polym Res 29, 23 (2022). https://doi.org/10.1007/s10965-021-02867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02867-6

Keywords

Navigation