Skip to main content
Log in

Preparing and characterization of Poly(glycerol-sebacic acid-urethane) (PGSU) nanocomposites: clearing role of unmodified and modified clay nanoparticles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the last few years, Poly (glycerol sebacate urethane) (PGSU), a novel elastomeric polyester, has been noticeably investigated in tissue engineering as it is known as a modified version of Poly (glycerol sebacate) (PGS) wherein hexamethylene diisocyanate (HDI) act as a crosslinker. In the present study, a series of PGSU-based nanocomposites were synthesized and characterized to achieve desirable elastomeric materials as a promising candidate for soft tissue engineering as well as controllable delivery of drugs. For this purpose, two kinds of nanoclay in the commercial name of Cloisite Na+ and Cloisite 10 A were selected to prepare PGSU nanocomposites. XRD and FTIR analysis proved the successful preparation of nanocomposites with intercalated structures. DMTA results indicated that both nanoclays enhanced storage modulus. It was also found that while Cloisite Na+ increased the glass transition temperature of PGSU, Cloisite 10 A reduced it. According to the TGA data, the thermal stability of PGSU was increased by adding Cloisite Na+. Finally, regarding the difference in the hydrophilic nature of Cloisite Na+ and Cloisite 10 A, the contact angle measurement and hydrolytic degradation revealed that each kind of the nanoclays had a different impression on the hydrophilicity and hydrolytic mass loss of the PGSU matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hosseini Chenani F, Rezaei VF, Fakhri V, Wurm FR, Uzun L, Goodarzi V (2021) Green synthesis and characterization of poly (glycerol‐azelaic acid) and its nanocomposites for applications in regenerative medicine.  J Appl Polym Sci 138(24):50563. https://doi.org/10.1002/app.50563

    Article  CAS  Google Scholar 

  2. Saeedi M, Vahidi O, Goodarzi V, Saeb MR, Izadi L, Mozafari M (2017) A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. Nanomed Nanotech Biol Med 13(8):2405–2414. https://doi.org/10.1016/j.nano.2017.07.013

    Article  CAS  Google Scholar 

  3. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602–606. https://doi.org/10.1038/nbt0602-602

    Article  CAS  PubMed  Google Scholar 

  5. Pomerantseva I, Krebs N, Hart A, Neville CM, Huang AY, Sundback CA (2009) Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res Part A 91A(4):1038–1047. https://doi.org/10.1002/jbm.a.32327

    Article  CAS  Google Scholar 

  6. Sun Z-J et al (2009) The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials 30(28):5209–5214. https://doi.org/10.1016/j.biomaterials.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  7. Lin D et al (2020) A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Biomaterials 253:120095. https://doi.org/10.1016/j.biomaterials.2020.120095

    Article  CAS  PubMed  Google Scholar 

  8. Salehi S, Bahners T, Gutmann JS, Gao S-L, Mäder E, Fuchsluger TA (2014) Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Adv 4(33):16951–16957. https://doi.org/10.1039/C4RA01237B

    Article  CAS  Google Scholar 

  9. Deniz P, Guler S, Çelik E, Hosseinian P, Aydin HM (2020) Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on Poly(glycerol-sebacate) (PGS) sheets. Mater Sci Eng C 106:110293. https://doi.org/10.1016/j.msec.2019.110293

    Article  CAS  Google Scholar 

  10. Frydrych M, Chen B (2017) Fabrication, structure and properties of three-dimensional biodegradable poly(glycerol sebacate urethane) scaffolds. Polymer (Guildf) 122:159–168. https://doi.org/10.1016/j.polymer.2017.06.064

    Article  CAS  Google Scholar 

  11. Wu T, Frydrych M, O’Kelly K, Chen B (2014) Poly (glycerol sebacate urethane)–cellulose nanocomposites with water-active shape-memory effects. Biomacromolecules 15(7):2663–2671. https://doi.org/10.1021/bm500507z

    Article  CAS  PubMed  Google Scholar 

  12. Yang L-Q et al (2013) Biodegradable cross-linked poly(trimethylene carbonate) networks for implant applications: Synthesis and properties. Polymer (Guildf) 54(11):2668–2675. https://doi.org/10.1016/j.polymer.2013.03.059

    Article  CAS  Google Scholar 

  13. Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R (2017). In: Martínez LMT, Kharissova OV, Kharisov BI (eds) “Nanoclays for Biomedical Applications BT - Handbook of Ecomaterials. Springer International Publishing, Cham, pp 1–19

    Google Scholar 

  14. Dawson JI, Oreffo ROC (2013) Clay: New Opportunities for Tissue Regeneration and Biomaterial Design. Adv Mater 25:4069–4086. https://doi.org/10.1002/adma.201301034

    Article  CAS  PubMed  Google Scholar 

  15. Goodarzi V, Monemian SA, Angaji MT, Motahari S (2008) Improvement of thermal and fire properties of polypropylene. J Appl Polym Sci 110:2971–2979. https://doi.org/10.1002/app.28892

    Article  CAS  Google Scholar 

  16. Monemian SA, Goodarzi V, Zahedi P, Angaji MT (2007) PET/imidazolium-based OMMT nanocomposites via in situ polymerization: Morphological, thermal, and nonisothermal crystallization studies. Adv Polym Technol 26:247–257. https://doi.org/10.1002/adv.20105

    Article  CAS  Google Scholar 

  17. Beryl. JR, Xavier JR (2021) A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nanoclay on mild steel in chloride environment. J Polym Res 28:189. https://doi.org/10.1007/s10965-021-02512-2

    Article  CAS  Google Scholar 

  18. Cervantes-Uc JM, Cauich-Rodríguez JV, Vázquez-Torres H, Garfias-Mesías LF, Paul DR (2007) Thermal degradation of commercially available organoclays studied by TGA–FTIR. Thermochim Acta 457(1):92–102. https://doi.org/10.1016/j.tca.2007.03.008

    Article  CAS  Google Scholar 

  19. Zhang X, Jia C, Qiao X, Liu T, Sun K (2016) Porous poly(glycerol sebacate) (PGS) elastomer scaffolds for skin tissue engineering. Polym Test 54:118–125. https://doi.org/10.1016/j.polymertesting.2016.07.006

    Article  CAS  Google Scholar 

  20. Zidan TA, Yehia AA, Abdelhamid AE (2021) Crosslinked poly(methacrylic acid)/organoclay nanocomposites: synthesis, characterization and methylene blue adsorption from aquatic environments. J Polym Res 28:306. https://doi.org/10.1007/s10965-021-02665-0

    Article  CAS  Google Scholar 

  21. Abdollahi MF, Zandi M, Shokrollahi P, Ehsani M (2015) Synthesis and characterization of curcumin segmented polyurethane with induced antiplatelet activity. J Polym Res 22(9):179. https://doi.org/10.1007/s10965-015-0824-1

    Article  CAS  Google Scholar 

  22. Pielichowska K, Król K, Majka TM (2016) Polyoxymethylene-copolymer based composites with PEG-grafted hydroxyapatite with improved thermal stability. Thermochim Acta 633:98–107. https://doi.org/10.1016/j.tca.2016.03.021

    Article  CAS  Google Scholar 

  23. Saha M, Ray R, Choudhury AR et al (2021) Impact of exfoliation/intercalation of nano-clay on structure, morphology and electrical properties of poly (ethylene oxide) based solid nanocomposite electrolytes. J Polym Res 28:299. https://doi.org/10.1007/s10965-021-02657-0

    Article  CAS  Google Scholar 

  24. Batool R, Altaf F, Hameed MU et al (2021) In situ chemical synthesis and characterization of PAN/clay nanocomposite for potential removal of Pb+2 ions from aqueous media. J Polym Res 28:312. https://doi.org/10.1007/s10965-021-02674-z

    Article  CAS  Google Scholar 

  25. Mohamed MG, Mahdy A, Obaid RJ et al (2021) Synthesis and characterization of polybenzoxazine/clay hybrid nanocomposites for UV light shielding and anti-corrosion coatings on mild steel. J Polym Res 28:297. https://doi.org/10.1007/s10965-021-02657-0

    Article  CAS  Google Scholar 

  26. Stanly S, John H (2021) Uncarbonized crosslinked PVA-modified MMT/reduced graphene hybrid aerogel for efficient carbon dioxide adsorption at low pressure. J Polym Res 28:280. https://doi.org/10.1007/s10965-021-02614-x

    Article  CAS  Google Scholar 

  27. Panwar V, Pal K (2017) Chapter 12- Dynamic mechanical analysis of clay–polymer nanocomposites, K. Jlassi, M. M. Chehimi, and S. B. T.-C.-P. N. Thomas, Eds. Elsevier  pp. 413–441

  28. Chowreddy RR, Nord-Varhaug K, Rapp F (2019) Recycled Poly(Ethylene Terephthalate)/Clay Nanocomposites: Rheology, Thermal and Mechanical Properties. J Polym Environ 27(1):37–49. https://doi.org/10.1007/s10924-018-1320-6

    Article  CAS  Google Scholar 

  29. Mohanty S, Nayak SK (2007) Effect of clay exfoliation and organic modification on morphological, dynamic mechanical, and thermal behavior of melt‐compounded polyamide‐6 nanocomposites. Polym Compos 28(2):153–162. https://doi.org/10.1002/pc.20284

  30. Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287(8):553–558. https://doi.org/10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3

    Article  CAS  Google Scholar 

  31. Huskić M, Žigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl Clay Sci 85:109–115. https://doi.org/10.1016/j.clay.2013.09.004

    Article  CAS  Google Scholar 

  32. Ionita D, Cristea M, Gaina C (2020) Prediction of polyurethane behaviour via time-temperature superposition: Meanings and limitations. Polym Test 83:106340. https://doi.org/10.1016/j.polymertesting.2020.106340

    Article  CAS  Google Scholar 

  33. Goodarzi V, Kokabi M, Razzaghi Kashani M, Reza Bahramian A (2014) Prediction of long‐term mechanical properties of PVDF/BaTiO3 nanocomposite. J Appl Polym Sci 131(16). https://doi.org/10.1002/app.40596

  34. Szlachta M, Ordon K, Nowicka K, Pielichowska K (2020) Thermal properties of polyurethane-based composites modified with chitosan for biomedical applications. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09283-w

    Article  Google Scholar 

  35. Mohomane SM, Djokovic V, Thomas S, Luyt AS (2011) Polychloroprene nanocomposites filled with different organically modified clays: Morphology, thermal degradation and stress relaxation behaviour. Polym Test 30(5):585–593. https://doi.org/10.1016/j.polymertesting.2011.03.002

    Article  CAS  Google Scholar 

  36. Nagarajan M, Benjakul S, Prodpran T, Songtipya P (2014) Characteristics of bio-nanocomposite films from tilapia skin gelatin incorporated with hydrophilic and hydrophobic nanoclays. J Food Eng 143:195–204. https://doi.org/10.1016/j.jfoodeng.2014.06.038

    Article  CAS  Google Scholar 

  37. Chiou B-S, Yee E, Glenn GM, Orts WJ (2005) Rheology of starch–clay nanocomposites. Carbohydr Polym 59(4):467–475. https://doi.org/10.1016/j.carbpol.2004.11.001

    Article  CAS  Google Scholar 

  38. Woodard LN, Grunlan MA (2018) Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett7(8):976–982. https://doi.org/10.1021/acsmacrolett.8b00424

  39. Gaharwar AK et al (2015) Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomater Sci 3(1):46–58. https://doi.org/10.1039/C4BM00222A

    Article  CAS  PubMed  Google Scholar 

  40. Paul M-A, Delcourt C, Alexandre M, Degée P, Monteverde F, Dubois P (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87(3):535–542. https://doi.org/10.1016/j.polymdegradstab.2004.10.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahed Ahmadi or Vahabodin Goodarzi.

Ethics declarations

Conflict of interest

There is no conflict and interest for this paper. All of persons had same contribution on this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• PGSU/Clay nanocomposites were successfully synthesized using Cloisite Na+ and Cloisite 10 A.

• The successful formation of intercalated structures was proved by the XRD technique.

• Both nanoclays noticeably affected the viscoelastic properties and Tg value of PGSU.

• The hydrophilicity of nanocomposites showed highly dependence on the nanoclay types.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 168 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monem, M., Ahmadi, Z., Fakhri, V. et al. Preparing and characterization of Poly(glycerol-sebacic acid-urethane) (PGSU) nanocomposites: clearing role of unmodified and modified clay nanoparticles. J Polym Res 29, 25 (2022). https://doi.org/10.1007/s10965-021-02866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02866-7

Keywords

Navigation