Skip to main content
Log in

Modelling the kinetics of direct Cu(II) adsorption on two porous resins modified with mussel-inspired chemistry

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two synthetic resins (i.e. Dowex Optipore V493 (DOV493) and XAD7) were subjected to a physical surface modification with mussel-inspired chemistry. Kinetics of direct Cu(II) adsorption were studied and the experimental data were modeled according to some adsorption kinetic models. The studied kinetic models suggested (i) diffusion-controlled and (ii) adsorption-controlled mechanisms for the direct adsorption of Cu(II) on PD-DOV493 and PD-XAD7, respectively. Regardless of the rate-limiting step, the studied two polymeric resins (i.e. DOV493 and XAD7) could be converted to new forms capable of binding Cu(II), which in their original form is impossible. Equilibrium adsorption capacities around 70 µg/g and 500 µg/g were determined to be accessible for PD-DOV493 and PD-XAD7, respectively, at relatively low initial Cu(II) concentrations (i.e. ~ 1–3 ppm). It is believed that the obtained results will be useful for understanding the nature of heavy metal adsorption kinetics on PD-coated porous polymeric resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Özer A (2007) Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran. J Hazard Mater 141:753–761. https://doi.org/10.1016/j.jhazmat.2006.07.040

    Article  CAS  PubMed  Google Scholar 

  2. Bişgin AT (2019) Surfactant-Assisted Emulsification and Surfactant-Based Dispersive Liquid-Liquid Microextraction Method for Determination of Cu(II) in Food and Water Samples by Flame Atomic Absorption Spectrometry. J AOAC Int 102:1516–1522. https://doi.org/10.5740/jaoacint.19-0039

    Article  CAS  Google Scholar 

  3. Hashemi SH, Kaykhaii M, Jamali Keikha A et al (2019) Application of response surface methodology for silver nanoparticle stir bar sorptive extraction of heavy metals from drinking water samples: A Box-Behnken design. Analyst 144:3525–3532. https://doi.org/10.1039/c9an00165d

    Article  CAS  PubMed  Google Scholar 

  4. Demir C, Öner M, Bodur S et al (2021) A Simple and Efficient Extraction Method for the Preconcentration of Copper in Tap Water and Linden Tea Samples Prior to FAAS Measurement. ChemistrySelect 6:2906–2912. https://doi.org/10.1002/slct.202100149

    Article  CAS  Google Scholar 

  5. Ahmad A, Siddique JA, Laskar MA et al (2015) New generation Amberlite XAD resin for the removal of metal ions: A review. J Environ Sci 31:104–123. https://doi.org/10.1016/j.jes.2014.12.008

    Article  CAS  Google Scholar 

  6. Gezici O, Kara H (2011) Towards multimodal HPLC separations on humic acid-bonded aminopropyl silica: RPLC and LEC behavior. Talanta 85:2405–2410. https://doi.org/10.1016/j.talanta.2011.07.076

    Article  CAS  PubMed  Google Scholar 

  7. Romanazzi G, Mastrorilli P, Latronico M et al (2018) Catalytic activities of heterogeneous catalysts obtained by copolymerization of metal-containing 2-(acetoacetoxy)ethyl methacrylate. Open Chem 16:520–534. https://doi.org/10.1515/chem-2018-0055

    Article  CAS  Google Scholar 

  8. Zhang J (2019) Physical insights into kinetic models of adsorption. Sep Purif Technol 229:115832. https://doi.org/10.1016/j.seppur.2019.115832

    Article  CAS  Google Scholar 

  9. Mukherjee R, Gebreslassie B, Diwekar UM (2017) Design of novel polymeric adsorbents for metal ion removal from water using computer-aided molecular design. Clean Technol Environ Policy 19:483–499. https://doi.org/10.1007/s10098-016-1236-6

    Article  CAS  Google Scholar 

  10. Rahman MO, Rahman N, Ahmed GMF et al (2020) Synthesis and implication of grafted polymeric adsorbent for heavy metal removal. SN Appl Sci 2:1–10. https://doi.org/10.1007/s42452-020-2908-8

    Article  CAS  Google Scholar 

  11. Komjarova I, Blust R (2006) Comparison of liquid–liquid extraction, solid-phase extraction and co-precipitation preconcentration methods for the determination of cadmium, copper, nickel, lead and zinc in seawater. Anal Chim Acta 576:221–228. https://doi.org/10.1016/j.aca.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Melek E, Tuzen M, Soylak M (2006) Flame atomic absorption spectrometric determination of cadmium(II) and lead(II) after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493. Anal Chim Acta 578:213–219. https://doi.org/10.1016/j.aca.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  13. Gezici O, Bişgin AT (2021) Generation of a pH-blind/pH-sensitive alternating surface on a hydrophobic resin by mussel-inspired chemistry and investigating the effect of surface modification on the adsorption dynamics of some anionic colorants. J Polym Res 28:58. https://doi.org/10.1007/s10965-021-02428-x

    Article  CAS  Google Scholar 

  14. Contreras Rodríguez AR, Saiz-Poseu J, García-Pardo J et al (2016) Biocompatible polydopamine-like particles for the removal of heavy metals at extremely low concentrations. RSC Adv. https://doi.org/10.1039/c6ra03664c

    Article  Google Scholar 

  15. Dong Z, Wang D, Liu X et al (2014) Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J Mater Chem A 2:5034–5040. https://doi.org/10.1039/C3TA14751G

    Article  CAS  Google Scholar 

  16. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol. https://doi.org/10.1021/es400571g

    Article  PubMed  PubMed Central  Google Scholar 

  17. Özbek G, Gezici O, Bayrakci M (2020) An Application of Polydopamine-dip Coating as a Gentle Surface Modification Process for Cryogel Disks. J Inst Sci Technol 10:1747–1758. https://doi.org/10.21597/jist.684130

  18. Zeng Q, Qi X, Zhang M et al (2020) Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. Int J Biol Macromol 145:1049–1058. https://doi.org/10.1016/j.ijbiomac.2019.09.197

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Yang H-C, He F et al (2019) Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter 1:115–155. https://doi.org/10.1016/j.matt.2019.05.002

    Article  Google Scholar 

  20. Pan X, Cheng S, Zhang C et al (2021) Mussel-inspired magnetic pullulan hydrogels for enhancing catalytic degradation of antibiotics from biomedical wastewater. Chem Eng J 409:128203. https://doi.org/10.1016/j.cej.2020.128203

    Article  CAS  Google Scholar 

  21. Pan X, Cheng S, Su T et al (2019) Fenton-like catalyst Fe3O4@polydopamine-MnO2 for enhancing removal of methylene blue in wastewater. Colloids Surfaces B Biointerfaces 181:226–233

    Article  CAS  Google Scholar 

  22. Pan X, Cheng S, Su T et al (2019) Poly (2-hydroxypropylene imines) functionalized magnetic polydopamine nanoparticles for high-efficiency DNA isolation. Appl Surf Sci 498:143888

  23. Sen Gupta S, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: A review. Adv Colloid Interface Sci 162:39–58. https://doi.org/10.1016/j.cis.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  24. Qiu H, Lv L, Pan B et al (2009) Critical review in adsorption kinetic models. J Zhejiang Univ A 10:716–724. https://doi.org/10.1631/jzus.A0820524

    Article  CAS  Google Scholar 

  25. Wang J, Guo X (2020) Adsorption kinetic models: Physical meanings, applications, and solving methods. J Hazard Mater 390:122156. https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  PubMed  Google Scholar 

  26. Boyd GE, Adamson AW, Myers LS (1947) The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics 1. J Am Chem Soc 69:2836–2848. https://doi.org/10.1021/ja01203a066

    Article  CAS  PubMed  Google Scholar 

  27. Svilović S, Rušić D, Bašić A (2010) Investigations of different kinetic models of copper ions sorption on zeolite 13X. Desalination 259:71–75. https://doi.org/10.1016/j.desal.2010.04.033

    Article  CAS  Google Scholar 

  28. Abdul Rahim AR, Mohsin HM, Thanabalan M et al (2020) Effective carbonaceous desiccated coconut waste adsorbent for application of heavy metal uptakes by adsorption: Equilibrium, kinetic and thermodynamics analysis. Biomass Bioenerg 142:105805. https://doi.org/10.1016/j.biombioe.2020.105805

    Article  CAS  Google Scholar 

  29. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakademiens Handl 24:1–39

    Google Scholar 

  30. Sahoo TR, Prelot B (2020) Adsorption processes for the removal of contaminants from wastewater. In: Nanomaterials for the Detection and Removal of Wastewater Pollutants. Elsevier, pp 161–222

  31. Ho YS, Wase DAJ, Forster CF (1996) Removal of lead ions from aqueous solution using sphagnum moss peat as absorbent. Water SA 22:219–224

    CAS  Google Scholar 

  32. Guo X, Wang J (2019) Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J Mol Liq 296:111850. https://doi.org/10.1016/j.molliq.2019.111850

    Article  CAS  Google Scholar 

  33. Liuyang X, Yang H, Huang S et al (2020) Resource utilization of secondary pyrolysis oil-based drilling cuttings ash for removing Cr (VI) contaminants: Adsorption properties, kinetics and mechanism. J Environ Chem Eng 8:104474. https://doi.org/10.1016/j.jece.2020.104474

    Article  CAS  Google Scholar 

  34. Ritchie AG (1977) Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 73:1650. https://doi.org/10.1039/f19777301650

  35. Jaroniec M (1978) On Ritchie’s equation for adsorption kinetics of gases on solids. React Kinet Catal Lett 9:309–313. https://doi.org/10.1007/BF02070505

    Article  CAS  Google Scholar 

  36. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  37. Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  38. Moussout H, Ahlafi H, Aazza M, Maghat H (2018) Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int J Mod Sci 4:244–254. https://doi.org/10.1016/j.kijoms.2018.04.001

    Article  Google Scholar 

  39. Ho YS, McKay G (1998) A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot. https://doi.org/10.1205/095758298529696

    Article  Google Scholar 

  40. Lee Y, Lee H, Kim YB et al (2008) Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater 20:4154–4157. https://doi.org/10.1002/adma.200800756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu M, Zeng G, Wang K et al (2016) Recent developments in polydopamine: An emerging soft matter for surface modification and biomedical applications. Nanoscale 8

  42. Ryu JH, Messersmith PB, Lee H (2018) Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl Mater Interfaces 10:7523–7540. https://doi.org/10.1021/acsami.7b19865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science (80-) 318:426–430. https://doi.org/10.1126/science.1147241

  44. Gezici O, Küçükosmanoǧlu M, Ayar A (2006) The adsorption behavior of crystal violet in functionalized sporopollenin-mediated column arrangements. J Colloid Interface Sci 304:307–316. https://doi.org/10.1016/j.jcis.2006.09.048

    Article  CAS  PubMed  Google Scholar 

  45. Yang Y, Chun Y, Shang G, Huang M (2004) pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir 20:6736–6741. https://doi.org/10.1021/la049363t

    Article  CAS  PubMed  Google Scholar 

  46. Ghaedi M, Karami B, Shamsaldini S, Soylak M (2014) Amberlite XAD-7 resin impregnated with 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2yl)-4-nitrophenol for enrichment of metal ions. J Saudi Chem Soc 18:674–680. https://doi.org/10.1016/j.jscs.2014.01.012

    Article  CAS  Google Scholar 

  47. Zia Q, Tabassum M, Meng J et al (2021) Polydopamine-assisted grafting of chitosan on porous poly (L-lactic acid) electrospun membranes for adsorption of heavy metal ions. Int J Biol Macromol 167:1479–1490. https://doi.org/10.1016/j.ijbiomac.2020.11.101

    Article  CAS  PubMed  Google Scholar 

  48. Yang H-C, Luo J, Lv Y et al (2015) Surface engineering of polymer membranes via mussel-inspired chemistry. J Memb Sci 483:42–59. https://doi.org/10.1016/j.memsci.2015.02.027

    Article  CAS  Google Scholar 

  49. Jiang J, Zhu L, Zhu L et al (2011) Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 27:14180–14187. https://doi.org/10.1021/la202877k

    Article  CAS  PubMed  Google Scholar 

  50. van der Leeden MC (2005) Are Conformational Changes, Induced by Osmotic Pressure Variations, the Underlying Mechanism of Controlling the Adhesive Activity of Mussel Adhesive Proteins? Langmuir 21:11373–11379. https://doi.org/10.1021/la0515468

    Article  CAS  PubMed  Google Scholar 

  51. Jin Z, Xiao Y, Xu Z et al (2021) Dopamine-modified poly(styrene) nanospheres as new high-speed adsorbents for copper-ions having enhanced smoke-toxicity-suppression and flame-retardancy. J Colloid Interface Sci 582:619–630. https://doi.org/10.1016/j.jcis.2020.08.077

    Article  CAS  PubMed  Google Scholar 

  52. Leng C, Liu Y, Jenkins C et al (2013) Interfacial Structure of a DOPA-Inspired Adhesive Polymer Studied by Sum Frequency Generation Vibrational Spectroscopy. Langmuir 29:6659–6664. https://doi.org/10.1021/la4008729

    Article  CAS  PubMed  Google Scholar 

  53. Kang SM, You I, Cho WK et al (2010) One-Step Modification of Superhydrophobic Surfaces by a Mussel-Inspired Polymer Coating. Angew Chemie Int Ed 49:9401–9404. https://doi.org/10.1002/anie.201004693

    Article  CAS  Google Scholar 

  54. Weber W, Morris JC (1963) Kinetics of Adsorption on Carbon from Solution. J Sanit Eng Div 89:31–59

    Article  Google Scholar 

  55. Dotto GL, Pinto LAA (2011) Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. J Hazard Mater 187:164–170. https://doi.org/10.1016/j.jhazmat.2011.01.016

    Article  CAS  PubMed  Google Scholar 

  56. Noroozi B, Sorial GA, Bahrami H, Arami M (2007) Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent—Silkworm pupa. J Hazard Mater 139:167–174. https://doi.org/10.1016/j.jhazmat.2006.06.021

    Article  CAS  PubMed  Google Scholar 

  57. Qi X, Chen M, Qian Y et al (2019) Construction of macroporous salecan polysaccharide-based adsorbents for wastewater remediation. Int J Biol Macromol 132:429–438. https://doi.org/10.1016/j.ijbiomac.2019.03.155

    Article  CAS  PubMed  Google Scholar 

  58. Pan X, Zuo G, Su T et al (2019) Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green. Colloids Surfaces A Physicochem Eng Asp 560:106–113. https://doi.org/10.1016/j.colsurfa.2018.10.014

    Article  CAS  Google Scholar 

  59. Qi X, Zeng Q, Tong X et al (2021) Polydopamine/montmorillonite-embedded pullulan hydrogels as efficient adsorbents for removing crystal violet. J Hazard Mater 402:123359. https://doi.org/10.1016/j.jhazmat.2020.123359

    Article  CAS  PubMed  Google Scholar 

  60. Tuzen M, Melek E, Soylak M (2008) Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493. J Hazard Mater 159:335–341. https://doi.org/10.1016/j.jhazmat.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  61. Grad OA, Ciopec M, Negrea A et al (2021) Evaluation of Performance of Functionalized Amberlite XAD7 with Dibenzo-18-Crown Ether-6 for Palladium Recovery. Materials (Basel) 14:1003. https://doi.org/10.3390/ma14041003

    Article  CAS  Google Scholar 

  62. Benamor M, Bouariche Z, Belaid T, Draa MT (2008) Kinetic studies on cadmium ions by Amberlite XAD7 impregnated resins containing di(2-ethylhexyl) phosphoric acid as extractant. Sep Purif Technol 59:74–84. https://doi.org/10.1016/j.seppur.2007.05.031

    Article  CAS  Google Scholar 

  63. Dreyer DR, Miller DJ, Freeman BD et al (2012) Elucidating the structure of poly(dopamine). Langmuir 28:6428–6435. https://doi.org/10.1021/la204831b

    Article  CAS  PubMed  Google Scholar 

  64. Hong S, Wang Y, Park SY, Lee H (2018) Progressive fuzzy cation-π assembly of biological catecholamines. Sci Adv 4:eaat7457. https://doi.org/10.1126/sciadv.aat7457

  65. Gao B, Su L, Tong Y et al (2014) Ion Permeability of Polydopamine Films Revealed Using a Prussian Blue-Based Electrochemical Method. J Phys Chem B 118:12781–12787. https://doi.org/10.1021/jp507617t

    Article  CAS  PubMed  Google Scholar 

  66. Xiao Y, Ma C, Jin Z et al (2021) Functional covalent organic framework illuminate rapid and efficient capture of Cu (II) and reutilization to reduce fire hazards of epoxy resin. Sep Purif Technol 259:118119. https://doi.org/10.1016/j.seppur.2020.118119

    Article  CAS  Google Scholar 

  67. Shahrashoub M, Bakhtiari S (2021) The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater 311:110692. https://doi.org/10.1016/j.micromeso.2020.110692

    Article  CAS  Google Scholar 

  68. Wei P, Lou H, Xu X et al (2021) Preparation of PP non-woven fabric with good heavy metal adsorption performance via plasma modification and graft polymerization. Appl Surf Sci 539:148195. https://doi.org/10.1016/j.apsusc.2020.148195

    Article  CAS  Google Scholar 

  69. Zhong C, Lee DH, Kim JH, Kang J-H (2021) Adsorption of dissolved copper and zinc on sand and iron oxide coated sand (IOCS) for urban stormwater treatment: effects of pH, chloride, and sulfate. Desalin Water Treat 219:319–326. https://doi.org/10.5004/dwt.2021.26951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nigde Ömer Halisdemir University for the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Gezici.

Additional information

“In memory of my beloved brother, İsmail Kemal Gezici; 1969 (Kulu-Turkey) – 2021 (Telfs-Austria)”

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 305 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bişgin, A.T., Gezici, O. Modelling the kinetics of direct Cu(II) adsorption on two porous resins modified with mussel-inspired chemistry. J Polym Res 29, 15 (2022). https://doi.org/10.1007/s10965-021-02865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02865-8

Keywords

Navigation