Skip to main content
Log in

Effects of zinc isophthalate on the crystallization and crystal transformation behavior of polybutene alloy

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The slow crystallization rate and crystal transformation restrict the application of PB-A (PB blended with 2-3wt% polypropylene). This paper investigated the effects of zinc isophthalate (ZnIA) on the crystallization and crystal transformation behavior of PB-A by means of DSC, POM, XRD and Flash DSC. The results showed that addition of ZnIA raised the crystallization peak temperature from 71.1 ℃ to 82.8 ℃ and decreased the half crystallization time from 818 s to 160 s at the content of 0.2wt%. It also reduced the spherulites size dramatically according to the images of POM. The survey conducted by Flash DSC showed that the formation of amorphous phase was retarded by the addition of ZnIA as cooling rate increasing and as a result, the crystallinity of PB-A was raised from 50.0 to 56.1% with 0.2wt% ZnIA added. Moreover, the improvement on crystal transformation caused by ZnIA could be owing to the increase in crystallization temperature which leads to the enhancement of internal thermal stress and shortened nucleating process as well before the growth of form I. In conclusion, Znic Isophthalate is a kind of effective and multifunctional nucleating agent for PB-A and this study is beneficial to understand the mechanism of crystallization as well as the crystal transformation for PB-A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. De Rosa C, Auriemma F, Villani M et al (2014) Mechanical properties and stress-induced phase transformations of metallocene isotactic poly(1-butene): The influence of stereodefects[J]. Macromolecules 47(3):1053–1064

    Article  CAS  Google Scholar 

  2. Kaszonyiova M, Rybnikar F, Geil P (2007) Crystallization and transformation of polybutene-1[J]. J Macromol Sci Part B 43(5):1095–1114

    Article  Google Scholar 

  3. Tashiro K, Hu J, Wang H et al (2016) Refinement of the Crystal Structures of Forms I and II of Isotactic Polybutene-1 and a Proposal of Phase Transition Mechanism between Them[J]. Macromolecules 49(4):1392–1404

    Article  CAS  Google Scholar 

  4. Chau K, Geil P (2006) Solution history effects in polybutene-1[J]. J Macromol Sci Part B 23(1):115–142

    Article  Google Scholar 

  5. Yamashita M (2014) Regime II–III transition in isotactic polybutene-1 tetragonal crystal growth[J]. Polymer 55(3):733–737

    Article  Google Scholar 

  6. Yang C, Chen R, Hsu M (2003) New poly(amide imide imide)s based on tetraimide dicarboxylic acid condensed from 4,4-(hexafluoroisopropylidene)diphthalic anhydride,m-aminobenzoic acid, and 4,4-oxydianiline and various aromatic diamines[J]. J Appl Polym Sci 88(3):669–679

    CAS  Google Scholar 

  7. Boor J, Mitchell J (1963) Kinetics of crystallization and a crystal-crystal transition in poly‐1‐butene[J] 1(1):59–84

  8. Maruyama M, Sakamoto Y, Nozaki K et al (2010) Kinetic study of the II–I phase transition of isotactic polybutene-1[J]. Polymer 51(23):5532–5538

    Article  CAS  Google Scholar 

  9. Xin R, Zhang J, Sun X et al (2018) Polymorphic behavior and phase transition of poly(1-butene) and its copolymers[J]. Polymers (Basel) 10(5)

  10. Androsch R, Di Lorenzo M, Schick C et al (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene)[J]. Polymer 51(21):4639–4662

    Article  CAS  Google Scholar 

  11. Azzurri F, Flores A, Alfonso G et al (2002) Polymorphism of Isotactic Poly(1-butene) as Revealed by Microindentation Hardness. 1. Kinetics of the Transformation[J] 35(24):128–145

    Google Scholar 

  12. Wang Z, DongX, Liu G et al (2018) Interfacial nucleation in iPP/PB-1 blends promotes the formation of polybutene-1 trigonal crystals[J]. Polymer 138:396–406

    Article  CAS  Google Scholar 

  13. De Rosa C, Auriemma F, Ruiz De Ballesteros O et al (2009) Crystallization properties and polymorphic behavior of isotactic poly(1-butene) from metallocene catalysts: The crystallization of form i from the melt[J]. Macromolecules 42(21):8286–8297

    Article  CAS  Google Scholar 

  14. Lu Y, Men Y (2018) Initiation development and stabilization of cavities during tensile deformation of semicrystalline polymers[J]. Chinese J of Polym Sci 36(10):1195–1199

    Article  CAS  Google Scholar 

  15. Hu J, Tashiro K (2016) Relation between higher-order structure and crystalline phase transition of oriented isotactic polybutene-1 investigated by temperature-dependent time-resolved simultaneous WAXD/SAXS measurements[J]. Polymer 90:165–177

    Article  CAS  Google Scholar 

  16. Wang Y, jiang Z et al (2013) Stretching temperature dependency of lamellar thickness in stress-induced localized melting and recrystallized polybutene-1[J]. Macromolecules 46(19):7874–7879

    Article  CAS  Google Scholar 

  17. Wang Y, Jiang Z, Wu Z et al (2012) Tensile deformation of polybutene-1 with stable form i at elevated temperature[J]. Macromolecules 46(2):518–522

    Article  Google Scholar 

  18. Liu Y, Cui K, Tian N et al (2012) Stretch-induced crystal–crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle x-ray scattering study[J]. Macromolecules 45(6):2764–2772

    Article  CAS  Google Scholar 

  19. Li L, Liu T, Zhao L et al (2009) CO2-Induced Crystal Phase Transition from Form II to I in Isotactic Poly-1-butene[J]. Macromolecules 42(6):2286–2290

    Article  CAS  Google Scholar 

  20. Shi J, Wu P, Li L et al (2009) Crystalline transformation of isotactic polybutene-1 in supercritical CO2 studied by in-situ fourier transform infrared spectroscopy[J]. Polymer 50(23):5598–5604

    Article  CAS  Google Scholar 

  21. Qiao Y, Yang F, Lu Y et al (2018) Spontaneous form II to I transition in low molar mass polybutene-1 at crystallization temperature reveals stabilization role of intercrystalline links and entanglements for metastable form ii crystals]. Macromolecules 51(20):8298–8305

    Article  CAS  Google Scholar 

  22. Wang Y, Lu Y, Jiang Z et al (2014) Molecular weight dependency of crystallization line, recrystallization line, and melting line of polybutene-1[J]. Macromolecules 47(18):6401–6407

    Article  CAS  Google Scholar 

  23. Shi G, Wang Z, Wang M et al (2020) Crystallization, orientation, and solid–solid crystal transition of polybutene-1 confined within nanoporous alumina[J]. Macromolecules 53(15):6510–6518

    Article  CAS  Google Scholar 

  24. Chen J, Wang B, Sun T et al (2019) Transformation from form II to form I accelerated by oriented lamellae in polybutene-1[J]. Polymer 185

  25. Miyazaki K, Takahashi Y, Terano M et al (2013) Additive effects of tripalmitin on morphologies and tensile properties of polybutene-1 and its composite with micro fibrous cellulose[J]. Polym Bull 70(4):1383–1395

    Article  CAS  Google Scholar 

  26. Nakatani H, Yamada Y, Takahashi Y et al (2012) Effects of crystal phase transformation on tensile properties of polybutene-1/cellulose composites[J]. J Appl Polym Sci 123(1):41–49

    CAS  Google Scholar 

  27. Ruiz De Ballesteros O, De Rosa C, Auriemma F et al (2019) Crystallization behavior, morphology and crystal transformation of blends of isotactic Poly(1-Butene) with propene-hexene copolymer[J]. Polymer 183

  28. Zhong Z, Ge H (2018) Direct formation of form I’ crystals in polybutene-1/polypropylene blend enhanced by cold crystallization[J]. Polymer 156:30–38

    Article  CAS  Google Scholar 

  29. Qiao Y, Men Y (2017) Intercrystalline Links Determined Kinetics of Form II to I Polymorphic Transition in Polybutene-1[J]. Macromolecules 50(14):5490–5497

    Article  CAS  Google Scholar 

  30. An C, Lou Y, Li Y et al (2019) Unusual II–I phase transition behavior of polybutene-1 ionomers in the presence of long-chain branch and ionic functional groups[J]. Macromolecules 52(12):4634–4645

    Article  CAS  Google Scholar 

  31. Liu C, Zhang Z, Huang S et al (2018) Form II to I transformation of polybutene-1 and copolymer of butene-1 and ethylene: A role of amorphous phase[J]. Polymer 149:146–153

    Article  CAS  Google Scholar 

  32. Di Lorenzo ML, Androsch R, Stolte I (2014) Tailoring the rigid amorphous fraction of isotactic polybutene-1 by ethylene chain defects[J]. Polymer 55(23):6132–6139

    Article  CAS  Google Scholar 

  33. Androsch R, Hohlfeld R, Frank W et al (2013) Transition from two-stage to direct melt-crystallization in isotactic random butene-1/propene copolymers[J]. Polymer 54(10):2528–2534

    Article  CAS  Google Scholar 

  34. Qin Y, Litvinov V, Chassé W et al (2021) Change of lamellar morphology upon polymorphic transition of form II to form I crystals in isotactic Polybutene-1 and its copolymer[J]. Polymer 215

  35. Li T, Liu L, Lou Y et al (2021) Phase transition of polybutene-1 ionomers: Influences of ion content and branch length[J]. Polymer 227

  36. Liu P, Xue Y, Men Y (2019) Melt Memory Effect beyond the Equilibrium Melting Point in Commercial Isotactic Polybutene-1[J]. Ind Eng Chem Res 58(14):5472–5478

    CAS  Google Scholar 

  37. Wittmann JC, Lotz B (1981) Epitaxial crystallization of polyethylene on organic substrates a reappraisal of the mode of action of selected nucleating agents[J]. J Polym Sci A Polym Chem 19(12):1837–1851

    Article  CAS  Google Scholar 

  38. Zhong Z, Su Z (2019) Effects of molecular weight on polybutene-1 cold crystallization from polybutene-1/polypropylene blend[J]. Polymer 174:52–60

    Article  CAS  Google Scholar 

  39. Xu Y, Ma Y, Liu C et al (2019) Crystallization of forms I′ and form II of polybutene-1 in stretched polypropylene/polybutene-1 blends[J]. Polymer 182

  40. Xu Y, Liu C, Nie H et al (2018) Fractionated and Confined Crystallization of Polybutene-1 in Immiscible Polypropylene/Polybutene-1 Blends[J]. Chinese J Polym Sci 36(7):859–865

    Article  CAS  Google Scholar 

  41. Ji Y, Su F, Cui K et al (2016) Mixing assisted direct formation of isotactic poly(1-butene) form I′ crystals from blend melt of isotactic poly(1-butene)/polypropylene[J]. Macromolecules 49(5):1761–1769

    Article  CAS  Google Scholar 

  42. Zhang X, Li Y, Sun Z (2018) Acceleration of crystal transformation from crystal form II to form I in Polybutene-1 induced by nanoparticles[J]. Polymer 150:119–129

    Article  CAS  Google Scholar 

  43. Alfadhel K, Al-Mulla A, Al-Busairi B (2016) Development and characterization of novel polybutylene nanocomposites[J]. J Compos Mater 51(1):95–108

    Google Scholar 

  44. Zhao Y, Chen J, Han L et al (2014) Nonisothermal crystallization kinetics of polybutene-1 containing nucleating agent with acid amides structure[J]. J Polym Eng 34(1):53–58

    CAS  Google Scholar 

  45. Cui X, Li C, Gu G et al (2020) Thermomechanical properties of poly(1-butene) synthesized by Ziegler–Natta catalyzed polymerization of 1‐butene in the presence of nucleating agents[J]. Polym Int 69(12):1237–1242

    Article  CAS  Google Scholar 

  46. Li Y, Wang Y, Fu C et al (2020) Influence of lamellar thickness on the transformation of isotactic polybutylene-1/carbon nanotube nanocomposites[J]. CrystEngComm 22(17):2990–2997

    Article  CAS  Google Scholar 

  47. Wanjale S, Jog J (2006) Crystallization and phase transformation kinetics of poly(1-butene)/MWCNT nanocomposites[J]. Polymer 47(18):6414–6421

    Article  CAS  Google Scholar 

  48. Sun Y, Zhao S, Zhang X et al (2020) Structural Relationships between Zinc Hexahydrophthalate and the β Phase of Isotactic Polypropylene[J]. Ind Eng Chem Res 59(41):18529–18538

    CAS  Google Scholar 

  49. Qin W, Xin Z, Pan C et al (2019) In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene[J]. Chem Eng J 358:1243–1252

    Article  CAS  Google Scholar 

  50. Qin W, Liu K, XIN Z et al (2020) Zinc pimelate as an effective β-nucleating agent for isotactic polypropylene at elevated pressures and under rapid cooling rates[J]. Polym Crystallization 3(3)

  51. Zhao S, Gong H, Yu X et al (2016) A highly active and selective β-nucleating agent for isotactic polypropylene and crystallization behavior of β-nucleated isotactic polypropylene under rapid cooling[J]. J Appl Polym Sci 133(32)

  52. Pan C, Qin W, Chen L et al (2018) A novel β-nucleating agent for isotactic polypropylene[J]. J Therm Anal Calorim 134(3):2029–2040

    CAS  Google Scholar 

  53. Qiao Y, Wang H, Men Y (2018) Retardance of form II to form I transition in polybutene-1 at late stage: a proposal of a new mechanism[J]. Macromolecules 51(6):2232–2239

    Article  CAS  Google Scholar 

  54. Caze C, Devaux E, Crespy A et al (1997) A new method to determine the Avrami exponent by d.s.c. studies of non-isothermal crystallization from the molten state. Polymer 38:497–502

    Article  CAS  Google Scholar 

  55. Liu P, Men Y (2021) Glass-transition-temperature-independent form II to I phase transition of low-molar-mass isotactic polybutene-1[J]. Macromolecules 54(2):858–865

    Article  CAS  Google Scholar 

  56. Qiao Y, Wang Q, Men Y (2016) Kinetics of nucleation and growth of form ii to i polymorphic transition in polybutene-1 as revealed by stepwise annealing[J]. Macromolecules 49(14):5126–5136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation of China (Grants 21878089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicheng Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, E., Guo, C., Wang, J. et al. Effects of zinc isophthalate on the crystallization and crystal transformation behavior of polybutene alloy. J Polym Res 29, 14 (2022). https://doi.org/10.1007/s10965-021-02863-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02863-w

Keywords

Navigation