Skip to main content
Log in

Resolving long-chain branch formation in tandem catalytic coordinative chain transfer polymerization of ethylene via thermal analysis

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Characterization of long-chain branches (LCBs) in semi-crystalline polyolefins has been a great challenge in both academia and industry. We have recently utilized a tandem catalytic system in a coordinative chain transfer polymerization, by which, upon repetitive release of growing chains as macromers and re-incorporating them, a branch-on-branch microstructure can be formed. Herein, we employ a tandem catalytic system based on a metallocene catalyst, which is capable of forming polyethylene chains with linear crystallizable sequences. Reactions conditions are varied systematically and their influence on the formation of LCB is studied through the lens of thermal analysis. Evidently, the polymerization temperature is the most influential parameter, which upon decreasing from 80 to 40 °C significantly reduces the average lamellae thickness and alters the crystal growth geometry from 3D spherulite- to 2D disk-like crystals. These results suggest thermal analysis as a sensitive method for quantifying LCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mortazavi SMM, Ahmadjo S, Omidvar M, Zamani MR, Fallahnezhad R (2021) Investigation into the effect of branch length of polyolefin and its statistical distribution on the flow improving performance. J Polym Res 28:1–10. https://doi.org/10.1007/s10965-020-02395-9

    Article  CAS  Google Scholar 

  2. Yan T, Guironnet D (2020) Polyethylene Containing Triblock Copolymers Synthesized by Post-polymerization Functionalization. Macromolecules 53:4338–4344. https://doi.org/10.1021/acs.macromol.0c00627

    Article  CAS  Google Scholar 

  3. Walsh DJ, Su E, Guironnet D (2018) Catalytic synthesis of functionalized (polar and non-polar) polyolefin block copolymers. Chem Sci 9:4703–4707. https://doi.org/10.1039/c8sc00450a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Furuyama R, Mitani M, Mohri JI, Mori R, Tanaka H, Fujita T (2005) Ethylene/higher α-olefin copolymerization behavior of fluorinated bis(phenoxy-imine)titanium complexes with methylalumoxane: Synthesis of new polyethylene-based block copolymers. Macromolecules 38:1546–1552. https://doi.org/10.1021/ma0481104

    Article  CAS  Google Scholar 

  5. Kojoh SI, Matsugi T, Saito J, Mitani M, Fujita T, Kashiwa N (2001) New monodisperse ethylene-propylene copolymers and a block copolymer created by a titanium complex having fluorine-containing phenoxy-imine chelate ligands. Chem Lett 822–823. https://doi.org/10.1246/cl.2001.822

  6. Ahmadi M, Rezaei F, Mortazavi SMM, Entezam M, Stadler FJ (2017) Complex interplay of short- and long-chain branching on thermal and rheological properties of ethylene/α-olefin copolymers made by metallocene catalysts with oscillating ligand structure. Polymer 112:43–52. https://doi.org/10.1016/j.polymer.2017.01.076

    Article  CAS  Google Scholar 

  7. Zanchin G, Bertini F, Vendier L, Ricci G, Lorber C, Leone G (2019) Copolymerization of ethylene with propylene and higher α-olefins catalyzed by (imido)vanadium(iv) dichloride complexes. Polym Chem 10:6200–6216. https://doi.org/10.1039/c9py01415b

    Article  CAS  Google Scholar 

  8. Boggioni L, Sidari D, Losio S, Stehling UM, Auriemma F, Malafronte A, Di Girolamo R, De Rosa C, Tritto I (2019) Ethylene-co-norbornene copolymerization using a dual catalyst system in the presence of a chain transfer agent. Polymers 11:554. https://doi.org/10.3390/polym11030554

    Article  CAS  PubMed Central  Google Scholar 

  9. Todo A, Takahashi M, Tsutsui T, Kashiwa N (1994) Feature of metallocene based LLDPE – molecular structure, morphological structure and properties of new polyethylenes –, Advanced Materials '93. Elsevier 171–174. https://doi.org/10.1016/b978-1-4832-8380-7.50046-8

  10. Boggioni L, Tritto I (2013) Polyolefins with cyclic comonomers. Adv Polym Sci 258:117–142. https://doi.org/10.1007/12_2013_217

    Article  CAS  Google Scholar 

  11. Zanchin G, Leone G (2020) Polyolefin Thermoplastic Elastomers from Polymerization Catalysis: Advantages, Pitfalls and Future Challenges. Prog Polym Sci 101342

  12. Valente A, Mortreux A, Visseaux M, Zinck P (2013) Coordinative chain transfer polymerization. Chem Rev 113(5):3836–3857

    Article  CAS  Google Scholar 

  13. Ebrahimi A, Ahmadjo S, Mohammadi M, Mortazavi M-M, Ahmadi M (2019) Interplay of reversible chain transfer and comonomer incorporation reactions in coordination copolymerization of ethylene/1–hexene. Polyolefins J 7(1):1–11

    Google Scholar 

  14. Jandaghian MH, Soleimannezhad A, Ahmadjo S, Mortazavi SMM, Ahmadi M (2018) Synthesis and characterization of isotactic poly (1-hexene)/branched polyethylene multiblock copolymer via chain shuttling polymerization technique. Ind Eng Chem Res 57(14):4807–4814

    Article  CAS  Google Scholar 

  15. Liu P, Liu W, Wang WJ, Li BG, Zhu S (2016) A Comprehensive Review on Controlled Synthesis of Long-Chain Branched Polyolefins: Part 1, Single Catalyst Systems. Macromol Reac Eng 10:156–179. https://doi.org/10.1002/mren.201500053

    Article  CAS  Google Scholar 

  16. Liu W, Liu P, Wang WJ, Li BG, Zhu S (2016) A Comprehensive Review on Controlled Synthesis of Long-Chain-Branched Polyolefins: Part 2, Multiple Catalyst Systems and Prepolymer Modification. Macromol Reac Eng 10:180–200. https://doi.org/10.1002/mren.201500054

    Article  CAS  Google Scholar 

  17. Lee HJ, Baek JW, Kim TJ, Park HS, Moon SH, Park KL, Bae SM, Park J, Lee BY (2019) Synthesis of long-chain branched polyolefins by coordinative chain transfer polymerization. Macromolecules 52(23):9311–9320

    Article  CAS  Google Scholar 

  18. Maddah Y, Ahmadjo S, Mortazavi SMM, Sharif F, Hassanian-Moghaddam D, Ahmadi M, Ahmadi M (2020) Control over Branching Topology by Introducing a Dual Catalytic System in Coordinative Chain Transfer Polymerization of Olefins. Macromolecules 53:4312–4322. https://doi.org/10.1021/acs.macromol.0c00358

    Article  CAS  Google Scholar 

  19. Britovsek GJP, Cohen SA, Gibson VC, Maddox PJ, Van Meurs M (2002) Iron-catalyzed polyethylene chain growth on zinc: Linear α-olefins with a poisson distribution. Angew Chem Int Ed 41:489–491. https://doi.org/10.1002/1521-3773(20020201)41:3%3c489::AID-ANIE489%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  20. Cariou R, Shabaker JW (2015) Iron-Catalyzed Chain Growth of Ethylene: In Situ Regeneration of ZnEt2 by Tandem Catalysis, ACS Catal 5:4363–4367. https://doi.org/10.1021/acscatal.5b01231

  21. Guo L, Dai S, Sui X, Chen C (2016) Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal 6(1):428–441

    Article  CAS  Google Scholar 

  22. Hassanian-Moghaddam D, Maddah Y, Ahmadjo S, Mortazavi SMM, Sharif F, Ahmadi M (2021) Mechanistic study on the metallocene-based tandem catalytic coordinative chain transfer polymerization for the synthesis of highly branched polyolefins. Eur Polym J 110454

  23. Yamamoto A, Morifuji K, Ikeda S, Saito T, Uchida Y, Misono A (1968) Diethylbis(dipyridyl)iron. A Butadiene Cyclodimerizaton Catalyst. J Am Chem Soc 90:1878–1883. https://doi.org/10.1021/ja01009a035

  24. Ahmadi M, Rashedi R, Ahmadjo S, Karimi M, Zahmaty M, Mortazavi SMM (2018) New olefin block copolymers of ethylene/1-hexene synthesized by iron and zirconocene catalysts in the presence of ZnEt2: Insights from thermal properties. J Therm Anal Calorim 131:2523–2533. https://doi.org/10.1007/s10973-017-6824-0

    Article  CAS  Google Scholar 

  25. Müller A, Hernandez Z, Arnal M, Sánchez J (1997) Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym Bull 39(4):465–472

    Article  Google Scholar 

  26. Müller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  Google Scholar 

  27. Müller A, Michell R, Pérez R, Lorenzo A (2015) Successive Self-nucleation and Annealing (SSA): Correct design of thermal protocol and applications. Eur Polym J 65:132–154

    Article  Google Scholar 

  28. Ahmadi A, Mortazavi SMM, Ahmadjo S, Zahmati M, Valieghbal K, Jafarifar D, Rashedi R (2016) Evaluation of continuous and discrete melting endotherms for determination of structural heterogeneities in Ziegler-Natta catalyzed linear low density polyethylene. Polyolefins J 3(2):135–146

  29. Monrabal B, Blanco J, Nieto J, Soares JB (1999) Characterization of homogeneous ethylene/1‐octene copolymers made with a single‐site catalyst. CRYSTAF analysis and calibration. J Polym Sci Part A: Polym Chem 37(1):89–93

  30. Monrabal B, Sancho‐Tello J, Mayo N, Romero L (2007) Crystallization elution fractionation. A new separation process for polyolefin resins, Macromolecular symposia. Wiley Online Library 71–79

  31. Karimi M, Mortazavi SMM, Ahmadjo S, Ahmadi M (2018) Structural analysis of linear/branched ethylene block copolymers. Polym Adv Technol 29:1161–1169. https://doi.org/10.1002/pat.4227

    Article  CAS  Google Scholar 

  32. Wenzel TT, Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL (2009) Chain shuttling catalysis and olefin block copolymers (OBCs). Top Organomet Chem 26:65–104. https://doi.org/10.1007/978-3-540-87751-6_3

    Article  CAS  Google Scholar 

  33. Hustad PO, Kuhlman RL, Arriola DJ, Carnahan EM, Wenzel TT (2007) Continuous production of ethylene-based diblock copolymers using coordinative chain transfer polymerization. Macromolecules 40:7061–7064. https://doi.org/10.1021/ma0717791

    Article  CAS  Google Scholar 

  34. Ahmadjo S, Arabi H, Zohuri G, Nekoomanesh M, Nejabat G, Mortazavi SMM (2014) Preparation of ethylene/α-olefins copolymers using (2-RInd) 2ZrCl2/MCM-41 (R:Ph, H) catalyst, microstructural study. J Therm Anal Calorim 116:417–426. https://doi.org/10.1007/s10973-013-3552-y

    Article  CAS  Google Scholar 

  35. Ahmadi M, Nekoomanesh M, Jamjah R, Zohuri G, Arabi H (2007) Modeling of slurry polymerization of ethylene using a soluble Cp2ZrCl2/MAO catalytic system. Macromol Theory Simul 16(5):557–565

    Article  CAS  Google Scholar 

  36. Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Varga J, Tranninger C, Pukánszky B (2014) Chain regularity of isotactic polypropylene determined by different thermal fractionation methods. J Therm Anal Calorim 118:235–245. https://doi.org/10.1007/s10973-014-3999-5

    Article  CAS  Google Scholar 

  37. Entezam M, Abbasi M, Ahmadi M (2017) Theoretical correlation of linear and non-linear rheological symptoms of long-chain branching in polyethylenes irradiated by electron beam at relatively low doses. Rheol Acta 56(9):729–742

    Article  CAS  Google Scholar 

  38. Ahmadi M, Nasresfahani A (2015) Realistic representation of kinetics and microstructure development during chain shuttling polymerization of olefin block copolymers. Macromol Theory Simul 24(4):311–321

    Article  CAS  Google Scholar 

  39. Mohammadi Y, Ahmadi M, Saeb MR, Khorasani MM, Yang P, Stadler FJ (2014) A detailed model on kinetics and microstructure evolution during copolymerization of ethylene and 1-octene: from coordinative chain transfer to chain shuttling polymerization. Macromolecules 47(14):4778–4789

    Article  CAS  Google Scholar 

  40. Groch P, Dziubek K, Czaja K, Sacher-Majewska B (2020) Thermal behavior of ethylene copolymers with di- and tri-alkenylsilsesquioxane comonomers synthesized by post-metallocene catalysts. J Therm Anal Calorim 142:1447–1456. https://doi.org/10.1007/s10973-020-09491-4

    Article  CAS  Google Scholar 

  41. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19(10):1142–1144

    Article  CAS  Google Scholar 

  42. Santoro O, Piola L, Cabe KM, Lhost O, Den Dauw K, Vantomme A, Welle A, Maron L, Carpentier J-F, Kirillov E (2020) Long-Chain Branched Polyethylene via Coordinative Tandem Insertion and Chain-Transfer Polymerization Using rac-{EBTHI} ZrCl2/MAO/Al–alkenyl Combinations: An Experimental and Theoretical Study. Macromolecules 53(20):8847–8857

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Ahmadjo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanian-Moghaddam, D., Mortazavi, S.M.M., Ahmadjo, S. et al. Resolving long-chain branch formation in tandem catalytic coordinative chain transfer polymerization of ethylene via thermal analysis. J Polym Res 29, 3 (2022). https://doi.org/10.1007/s10965-021-02860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02860-z

Keywords

Navigation