Skip to main content
Log in

Effect of oil–water interface and payload-DNA interactions on payload-encapsulated DNA nanogels

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein, we investigated the influence of emulsion process and DNA sequence on the morphology and surface property of the as-fabricated gel particles with and without payload. Nanogels can be prepared by using synthetic and kiwifruit-derived DNA above a certain concentration whilst nanocapsules can only be prepared by using a synthetic 19-mer DNA containing A nitrogen base. Kiwifruit-derived DNA was used to encapsulate two payloads, which were DOX and lipase, via oil-in-water and water-in-oil processes. The oil–water interface and payload-DNA interactions dictated their size, surface property, and payload encapsulation. The DOX-encapsulated nanogels exhibited comparable payload encapsulation regardless the emulsion process because DOX would not only intercalate in the DNA but also bind with the negatively charged DNA. The lipase-encapsulated nanogels prepared via oil-in-water process exhibited higher payload encapsulation and activity than those via water-in-oil process due to its hydrophobic nature and the creation of oil–water interface. Moreover, the advantage of enzyme encapsulation was revealed in the case at acidic solution pH. This study revealed the importance of the oil–water interface and payload-DNA interactions on the preparation of payload-encapsulated DNA nanogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Scheme 3.
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  2. Legros C, De Pauw-Gillet MC, Tam KC, Lecommandoux S, Taton D (2013) pH and redox responsive hydrogels and nanogels made from poly(2-ethyl-2-oxazoline). Polym Chem-Uk 4:4801–4808

    Article  CAS  Google Scholar 

  3. Zhang BM, Wang Y, Zhai GX (2016) Biomedical applications of the graphene-based materials. Mater Sci Eng C Mater Biol Appl 61:953–964

    Article  CAS  Google Scholar 

  4. Gurnani P, Perrier S (2020) Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 102:101209

  5. Carlsen A, Lecommandoux S (2009) Self-assembly of polypeptide-based block copolymer amphiphiles. Curr Opin Colloid In 14:329–339

    Article  CAS  Google Scholar 

  6. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  7. Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273

    Article  CAS  Google Scholar 

  8. Zhang H, Zhai Y, Wang J, Zhai G (2016) New progress and prospects: The application of nanogel in drug delivery. Mater Sci Eng C Mater Biol Appl 60:560–568

    Article  CAS  Google Scholar 

  9. Chen YF, Hsu MW, Su YC, Chang HM, Chang CH, Jan JS (2020) Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug carriers. Mater Sci Eng C Mater Biol Appl 114:111025

  10. Chen IH, Chen YF, Liou JH, Lai JT, Hsu CC, Wang NY, Jan JS (2019) Green synthesis of gold nanoparticle/gelatin/protein nanogels with enhanced bioluminescence/biofluorescence. Mater Sci Eng C Mater Biol Appl 105:110101

  11. Chen YF, Chen GY, Chang CH, Su YC, Chen YC, Jiang YS, Jan JS (2019) TRAIL encapsulated to polypeptide-crosslinked nanogel exhibits increased anti-inflammatory activities in Klebsiella pneumoniae-induced sepsis treatment. Mater Sci Eng C Mater Biol Appl 102:85–95

    Article  CAS  Google Scholar 

  12. Chen YF, Chang CH, Lin CY, Lin LF, Yeh ML, Jan JS (2018) Disulfide-cross-linked PEG-block-polypeptide nanoparticles with high drug loading content as glutathione-triggered anticancer drug nanocarriers. Colloid Surface B 165:172–181

    Article  CAS  Google Scholar 

  13. Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K (2008) Synthesis and optimization of gelatin nanoparticles using the miniemulsion process. Biomacromol 9:2383–2389

    Article  CAS  Google Scholar 

  14. Huang YF, Lu SC, Huang YC, Jan JS (2014) Cross-linked, self-fluorescent gold nanoparticle/polypeptide nanocapsules comprising dityrosine for protein encapsulation and label-free imaging. Small 10:1939–1944

    Article  CAS  Google Scholar 

  15. Zhang YX, Chen YF, Shen XY, Hu JJ, Jan JS (2016) Reduction- and pH-Sensitive lipoic acid-modified Poly(L-lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer 86:32–41

    Article  Google Scholar 

  16. Liou JH, Wang ZH, Chen IH, Wang SS, How SC, Jan JS (2020) Catalase immobilized in polypeptide/silica nanocomposites via emulsion and biomineralization with improved activities. Int J Biol Macromol 159:931–940

    Article  CAS  Google Scholar 

  17. Juul S, Iacovelli F, Falconi M, Kragh SL, Christensen B, Frohlich R, Franch O, Kristoffersen EL, Stougaard M, Leong KW, Ho YP, Sorensen ES, Birkedal V, Desideri A, Knudsen BR (2013) Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage. ACS Nano 7:9724–9734

    Article  CAS  Google Scholar 

  18. Kohman RE, Cha SS, Man HY, Han X (2016) Light-Triggered Release of Bioactive Molecules from DNA Nanostructures. Nano Lett 16:2781–2785

    Article  CAS  Google Scholar 

  19. Liu ZY, Li YM, Tian C, Mao CD (2013) A Smart DNA Tetrahedron That Isothermally Assembles or Dissociates in Response to the Solution pH Value Changes. Biomacromol 14:1711–1714

    Article  CAS  Google Scholar 

  20. Halley PD, Lucas CR, McWilliams EM, Webber MJ, Patton RA, Kural C, Lucas DM, Byrd JC, Castro CE (2016) Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model. Small 12:308–320

    Article  CAS  Google Scholar 

  21. Pan QS, Nie CP, Hu YL, Yi JT, Liu C, Zhang J, He MM, He MY, Chen TT, Chu X (2020) Aptamer-Functionalized DNA Origami for Targeted Codelivery of Antisense Oligonucleotides and Doxorubicin to Enhance Therapy in Drug-Resistant Cancer Cells. Acs Appl Mater Inter 12:400–409

    Article  CAS  Google Scholar 

  22. Rahman NFA, Basri M, Rahman MBA, Rahman RNZRA, Salleh AB (2011) High yield lipase-catalyzed synthesis of Engkabang fat esters for the cosmetic industry Bioresource Technol 102:2168–2176

  23. Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetics industry. Chem Soc Rev 42:6475–6490

    Article  CAS  Google Scholar 

  24. Palomo JM, Filice M, Romero O, Guisan JM (2013) Improving lipase activity by immobilization and post-immobilization strategies. Methods Mol Biol 1051:255–273

    Article  CAS  Google Scholar 

  25. Rodrigues RC, Virgen-Ortiz JJ, dos Santo JCS, Berenguer-Murcia A, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R (2019) Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 37:746–770

    Article  CAS  Google Scholar 

  26. Thangaraj B, Solomon PR (2019) Immobilization of Lipases - A Review. Part I: Enzyme Immobilization, Chembioeng Rev 6:157–166

    CAS  Google Scholar 

  27. Lee PY, Tuan-Mu HY, Hsiao LW, Hu JJ, Jan JS (2017) Nanogels comprising reduction-cleavable polymers for glutathione-induced intracellular curcumin delivery. J Polym Res 24:66

    Article  Google Scholar 

  28. Hsiao LW, Lai YD, Lai JT, Hsu CC, Wang NY, Steven SSW, Jan JS (2017) Cross-linked polypeptide-based gel particles by emulsion for efficient protein encapsulation. Polymer 115:261–272

    Article  CAS  Google Scholar 

  29. Pham TN, Su CF, Huang CC, Jan JS (2020) Biomimetic hydrogels based on L-Dopa conjugated gelatin as pH-responsive drug carriers and antimicrobial agents. Colloids Surf B Biointerfaces 196:111316

  30. Hordyjewicz-Baran Z, You LC, Smarsly B, Sigel R, Schlaad H (2007) Bioinspired polymer vesicles based on hydrophilically modified polybutadienes. Macromolecules 40:3901–3903

    Article  CAS  Google Scholar 

  31. Hou SS, Fan NS, Tseng YC, Jan JS (2018) Self-Assembly and Hydrogelation of Coil-Sheet Poly(-lysine)-block-poly(L-threonine) Block Copolypeptides. Macromolecules 51:8054–8063

    Article  CAS  Google Scholar 

  32. Tsai YL, Tseng YC, Chen YM, Wen TC, Jan JS (2018) Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: synthesis, self-assembly, and their interactions with proteins. Polym Chem-Uk 9:1178–1189

    Article  CAS  Google Scholar 

  33. Chen BY, Huang YF, Huang YC, Wen TC, Jan JS (2014) Alkyl Chain-Grafted Poly(L-lysine) Vesicles with Tunable Molecular Assembly and Membrane Permeability. ACS Macro Lett 3:220–223

    Article  CAS  Google Scholar 

  34. Luo JL, Panzarasa G, Osypova A, Sorin F, Spano F, Rossi RM, Sadeghpour A, Boesel LF (2019) Polyphenols as Morphogenetic Agents for the Controlled Synthesis of Mesoporous Silica Nanoparticles. Chem Mater 31:3192–3200

    Article  CAS  Google Scholar 

  35. Cherny AY, Anitas EM, Osipov VA, Kuklin AI (2017) Scattering from surface fractals in terms of composing mass fractals. J Appl Crystallogr 50:919–931

    Article  CAS  Google Scholar 

  36. Liwinska W, Stanislawska I, Lyp M, Stojek Z, Zabost E (2019) Switchable conformational changes of DNA nanogel shells containing disulfide-DNA hybrids for controlled drug release and efficient anticancer action. RSC Adv 9:13736–13748

    Article  CAS  Google Scholar 

  37. Zhang WQ, Tung CH (2017) Sequence-Independent DNA Nanogel as a Potential Drug Carrier. Macromol Rapid Comm 38:20

    CAS  Google Scholar 

  38. Cui PF, Zhuang WR, Hu X, Xing L, Yu RY, Qiao JB, He YJ, Li FY, Ling DS, Jiang HL (2018) A new strategy for hydrophobic drug delivery using a hydrophilic polymer equipped with stacking units. Chem Commun 54:8218–8221

    Article  CAS  Google Scholar 

  39. Kaczorowska A, Lamperska W, Fraczkowska K, Masajada J, Drobczynski S, Sobas M, Wrobel T, Chybicka K, Tarkowski R, Kraszewski S, Podbielska H, Kalas W, Kopaczynska M (2020) Profound Nanoscale Structural and Biomechanical Changes in DNA Helix upon Treatment with Anthracycline Drugs. Int J Mol Sci 21:4142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Ministry of Science and Technology, Taiwan (MOST 110-2221-E-006 -002 -MY3, 108-2221-E-006-034-MY3 and 107-2923-M-006-002-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng-Shiung Jan.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3466 KB)

Supplementary file2 (DOCX 671 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YF., Lin, WC., Wu, CJ. et al. Effect of oil–water interface and payload-DNA interactions on payload-encapsulated DNA nanogels. J Polym Res 29, 8 (2022). https://doi.org/10.1007/s10965-021-02859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02859-6

Keywords

Navigation