Skip to main content
Log in

Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Laser ablation was used to create novel nanocomposites of Chitosan-Poly (Vinyl Pyrrolidone) (PVP) blend incorporating graphene oxide nanoparticles (GONPs) to be utilized in microbial applications. The change in the structural, and optical properties of pure Chitosan-PVP after incorporated by graphene oxide have been investigated. XRD results confirmed the incorporation of GO into Chitosan/PVP blend and FT-IR results confirmed the interaction between Chitosan-PVP and GO NPs. UV data was confirmed that Chitosan/PVP/GO NPs after laser ablation time 10 min has lower band gap energy compared to other samples. The antimicrobial behavior of Chitosan/PVP/GO NPs at two times of laser ablation (5 min and 10 min) were performed against E. coli, P. aeruginosa, S. aureus, B. subtilis, and C. Albicans. The antimicrobial activity shows enhancement in the inhibition zones, it was enhanced from 5 ± 0.98 to 13 ± 0.72 for E. coli, 6 ± 0.56to 15 ± 0.84 for P. aeruginosa, 7 ± 0.73 to 17 ± 0.26 for S. aureus, 4 ± 0.89 to 15 ± .07 for B. subtilis, and 3 ± 0.54 to 8 ± 0.76 for C. Albicans. Chitosan/PVP/GO NPs significantly improve antimicrobial effects. The prepared compositions could be suggested after further study to be applied in microbial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poonguzhali R, Basha SK, Kumari VS (2017) Synthesis and characterization of chitosan/poly (vinylpyrrolidone) biocomposite for biomedical application. Polym Bull 74(6):2185–2201

    Article  CAS  Google Scholar 

  2. Ahmed MK, Mansour SF, Al-Wafi R, Menazea AA (2020) Composition and design of nanofibrous scaffolds of Mg/Se-hydroxyapatite/graphene oxide@ ε-polycaprolactone for wound healing applications. J Market Res 9(4):7472–7485

    CAS  Google Scholar 

  3. Lim JI, Kang MJ, Lee WK (2014) Lotus-leaf-like structured chitosan–polyvinyl pyrrolidone films as an anti-adhesion barrier. Appl Surf Sci 320:614–619

    Article  CAS  Google Scholar 

  4. Ahmed MK, Moydeen AM, Ismail AM, El-Naggar ME, Menazea AA, El-Newehy MH (2021) Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles. J Mol Struct 1225:129138‏

  5. Menazea AA, Mahmoud KH, Abdel-Rahim FM (2021) Tailoring modifications in the structural, optical, and electrical conductivity properties of poly vinyl pyrrolidone/chitosan doped with vanadium pentoxide nanoparticles using laser ablation technique. Appl Phys A 127(11):1–9

    Article  Google Scholar 

  6. Tajik F, Eslahi N, Rashidi A, Rad MM (2021) Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract. J Polym Res 28(8):1–10

    Article  Google Scholar 

  7. Abd El-Kader MFH, Elabbasy MT, Ahmed MK, Menazea AA (2021) Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation. J Market Res 13:291–300

    CAS  Google Scholar 

  8. Sanders WC (2015) Fabrication of polyvinylpyrrolidone micro-/nanostructures utilizing microcontact printing. J Chem Educ 92(11):1908–1912

    Article  CAS  Google Scholar 

  9. Menazea AA, Ismail AM, Awwad NS, Ibrahium HA (2020) Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J Market Res 9(5):9598–9606

    CAS  Google Scholar 

  10. Ramadass SK, Perumal S, Gopinath A, Nisal A, Subramanian S, Madhan B (2014) Sol–gel assisted fabrication of collagen hydrolysate composite scaffold: A novel therapeutic alternative to the traditional collagen scaffold. ACS Appl Mater Interfaces 6(17):15015–15025

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed MK, Menazea AA, Mansour SF, Al-Wafi R (2020) Differentiation between cellulose acetate and polyvinyl alcohol nanofibrous scaffolds containing magnetite nanoparticles/graphene oxide via pulsed laser ablation technique for tissue engineering applications. J Market Res 9(5):11629–11640

    CAS  Google Scholar 

  12. Dara PK, GK, S., Deekonda, K., Rangasamy, A., Mathew, S., & CN, R. (2021) Biomodulation of poly (vinyl alcohol)/starch polymers into composite-based hybridised films: physico-chemical, structural and biocompatibility characterization. J Polym Res 28(7):1–12

    Article  Google Scholar 

  13. Al-Mogbel MS, Elabbasy MT, Menazea AA, Sadek AW, Ahmed MK, Abd El-Kader MFH (2021) Conditions adjustment of polycaprolactone nanofibers scaffolds encapsulated with core shells of Au@ Se via laser ablation for wound healing applications. Spectrochimica Acta Part A: Mol Biomol Spectrosc 259:119899‏

  14. Elabbasy MT, Abd El-Kader MFH, Ismail AM, Menazea AA (2021) Regulating the function of bismuth (III) oxide nanoparticles scattered in Chitosan/Poly (Vinyl Pyrrolidone) by laser ablation on electrical conductivity characterization and antimicrobial activity. J Market Res 10:1348–1354

    CAS  Google Scholar 

  15. Menazea AA (2020) One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement. J Market Res 9(2):2412–2422

    CAS  Google Scholar 

  16. Menazea AA, Ahmed MK (2020) Nanosecond laser ablation assisted the enhancement of antibacterial activity of copper oxide nano particles embedded though Polyethylene Oxide/Polyvinyl pyrrolidone blend matrix. Radiat Phys Chem 174:108911‏

  17. El Achaby M, Essamlali Y, El Miri N, Snik A, Abdelouahdi K, Fihri A, Solhy A (2014) Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio‐nanocomposites. J Appl Polym Sci 131(22)‏

  18. Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohyd Polym 95(1):530–539

    Article  CAS  Google Scholar 

  19. Wang BL, Wang JL, Li DD, Ren KF, Ji J (2012) Chitosan/poly (vinyl pyrollidone) coatings improve the antibacterial properties of poly (ethylene terephthalate). Appl Surf Sci 258(20):7801–7808

    Article  CAS  Google Scholar 

  20. Yeh JT, Chen CL, Huang KS, Nien YH, Chen JL, Huang PZ (2006) Synthesis, characterization, and application of PVP/chitosan blended polymers. J Appl Polym Sci 101(2):885–891

    Article  CAS  Google Scholar 

  21. Hong Y, Chirila TV, Vijayasekaran S, Shen W, Lou X, Dalton PD (1998) Biodegradation in vitro and retention in the rabbit eye of crosslinked poly (1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J Biomed Mater Res: An Official J Soc Biomater, Jpn Soc Biomater, Australian Soc Biomater 39(4):650–659

    Article  CAS  Google Scholar 

  22. Sharma A, Kumar R, Ram S, Sharma PK (2020) Chitosan embedded with Ag/Au nanoparticles: investigation of their structural, optical and sensing properties. J Polym Res 27(9):1–11

    Google Scholar 

  23. Tommalieh MJ, Ibrahium HA, Awwad NS, Menazea AA (2020) Gold nanoparticles doped polyvinyl alcohol/chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 1221:128814‏

  24. Menazea AA, El-Newehy MH, Thamer BM, El-Naggar ME (2021) Preparation of antibacterial film-based biopolymer embedded with vanadium oxide nanoparticles using one-pot laser ablation. J Mol Struct 1225:129163‏

  25. Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi KP, Ehrlich H, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39(9):1644–1667

    Article  CAS  Google Scholar 

  26. Jiménez-Gómez CP, Cecilia JA (2020) Chitosan: A Natural biopolymer with a wide and varied range of applications. Molecules 25(17):3981

    Article  PubMed Central  Google Scholar 

  27. Merzendorfer H, Cohen E (2019) Chitin/chitosan: versatile ecological, industrial, and biomedical applications. In Extracellular Sugar-Based Biopolymers Matrices. Springer, Cham 541–624‏

  28. Wang BL, Liu XS, Ji Y, Ren KF, Ji J (2012) Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohyd Polym 90(1):8–15

    Article  Google Scholar 

  29. Ismail AM, Menazea AA, Ali H (2021) Selective adsorption of cationic azo dyes onto zeolite nanorod-based membranes prepared via laser ablation. J Mater Sci: Mater Electron 32(14):19352–19367

    CAS  Google Scholar 

  30. Menazea AA, Ismail AM, Elashmawi IS (2020) The role of Li4Ti5O12 nanoparticles on enhancement the performance of PVDF/PVK blend for lithium-ion batteries. J Market Res 9(3):5689–5698

    CAS  Google Scholar 

  31. Sandhya PK, Sreekala MS, Padmanabhan M, Thomas S (2021) Water sorption behavior of phenol formaldehyde resin reinforcing with reduced graphene oxide and ZnO decorated graphene oxide. J Polym Res 28(5):1–15

    Article  Google Scholar 

  32. Ahmed MK, El-Naggar ME, Mahmoud KH, Abdel-Rahim FM, Menazea AA (2021) Electrospun membranes of cellulose acetate/polyvinylidene difluoride containing Au/Se nanoparticles via laser ablation technique for methylene blue degradation. J Polym Res 28(8):1–9

    Article  Google Scholar 

  33. Mahdavi H, Rahimi A, Shahalizade T (2016) Catalytic polymeric membranes with palladium nanoparticle/multi-wall carbon nanotubes as hierarchical nanofillers: preparation, characterization and application. J Polym Res 23(3):39

    Article  Google Scholar 

  34. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci 38(8):1232–1261

    Article  CAS  Google Scholar 

  35. Mittal V (2014) Functional polymer nanocomposites with graphene: a review. Macromol Mater Eng 299(8):906–931

    Article  CAS  Google Scholar 

  36. Sadrolhosseini AR, Mahdi MA, Alizadeh F, Rashid SA (2019) Laser ablation technique for synthesis of metal nanoparticle in liquid. Laser Technol App‏

  37. Menazea AA, Awwad NS (2020) Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J Market Res 9(4):9434–9441

    CAS  Google Scholar 

  38. Mostafa AM, Menazea AA (2020) Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiat Phys Chem 176:109020‏

  39. Ahmed MK, El-Naggar ME, Aldalbahi A, El-Newehy MH, Menazea AA (2020) Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J Mol Liquids 315:113794‏

  40. Menazea AA, Mostafa AM (2020) Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. J Environ Chem Eng 8(5):104104‏

  41. Abdelghany AM, Menazea AA, Abd‐El‐Maksoud MA, Khatab TK (2020) Pulsed laser ablated zeolite nanoparticles: A novel nano‐catalyst for the synthesis of 1, 8‐dioxo‐octahydroxanthene and N‐aryl‐1, 8‐dioxodecahydroacridine with molecular docking validation. Appl Organomet Chem 34(2):e5250‏

  42. Selvaraj V, Jayanthi KP, Arunkumar K, Jeyaram S, Geethakrishnan T, Alagar M (2020) Synthesis and characterization of GO doped bio-resource based composites for NLO and multifaceted applications. J Polym Res 27(3):1–16

    Article  Google Scholar 

  43. Hu X, Mu L, Wen J, Zhou Q (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon 50(8):2772–2781

    Article  CAS  Google Scholar 

  44. Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Preparation and characterization of graphene oxide nanosheets. Proc Eng 32:759–764

    Article  Google Scholar 

  45. Yoo BM, Shin HJ, Yoon HW, Park HB (2014) Graphene and graphene oxide and their uses in barrier polymers. J Appl Polym Sci 131(1)‏

  46. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565‏

  47. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980

    Article  CAS  PubMed  Google Scholar 

  48. El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677

    Article  Google Scholar 

  49. Ahmadian-Alam L, Teymoori M, Mahdavi H (2020) Polymer grafted GO/sulfonated copolyimide proton exchange nanocomposite membrane: as a polymer electrolyte membranes fuel cell. J Polym Res 27(10):1–13

    Article  Google Scholar 

  50. Lim HN, Huang NM, Loo CH (2012) Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. J Non-Cryst Solids 358(3):525–530

    Article  CAS  Google Scholar 

  51. Abdelghany AM, Mekhail MS, Abdelrazek EM, Aboud MM (2015) Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles. J Alloy Compd 646:326–332

    Article  CAS  Google Scholar 

  52. Bhuiyan MAQ, Rahman MS, Rahaman MS, Shajahan M, Dafader NC (2015) Improvement of swelling behaviour of poly (vinyl pyrrolidone) and acrylic acid blend hydrogel prepared by the application of gamma radiation. Organic Chem Curr Res 4(138):2161–2401

    Google Scholar 

  53. Mohseni-Bandpi A, Kakavandi B, Kalantary R, Azari A, Keramati A (2015) Development of a novel magnetite–chitosan composite for the removal of fluoride from drinking water: adsorption modeling and optimization. RSC Adv 5(89):73279–73289

    Article  CAS  Google Scholar 

  54. Choo K, Ching Y, Chuah C, Julai S, Liou N (2016) Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber. Materials 9(8):644

    Article  PubMed Central  Google Scholar 

  55. Patterson A (1939) The Scherrer Formula for X-Ray Particle Size Determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  56. Safo I, Werheid M, Dosche C, Oezaslan M (2019) The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances 1(8):3095–3106

    Article  CAS  Google Scholar 

  57. Kamaruddin K, Edikresnha D, Sriyanti I, Munir MM, Khairurrijal K (2017) Synthesis of Polyvinylpyrrolidone (PVP)-Green Tea Extract Composite Nanostructures using Electrohydrodynamic Spraying Technique. IOP Conf Series: Mater Sci Eng 202:012043

  58. El Hotaby W, Sherif H, Hemdan B, Khalil W, Khalil S (2017) Assessment of in situ-Prepared Polyvinylpyrrolidone-Silver Nanocomposite for Antimicrobial Applications. Acta Phys Pol, A 131(6):1554–1560

    Article  Google Scholar 

  59. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4(4):185–191

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gutha Y, Pathak J, Zhang W, Zhang Y, Jiao X (2017) Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 103:234–241

    Article  CAS  PubMed  Google Scholar 

  61. Fernandes Queiroz M, Melo K, Sabry D, Sassaki G, Rocha H (2014) Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar Drugs 13(1):141–158

    Article  PubMed  Google Scholar 

  62. Ahmed RM (2014) Optical properties and structure of cobalt chloride doped PVA and its blend with PVP. Int J Mod Phys B 28(05):1450036

    Article  Google Scholar 

  63. Abdelghany AM, Menazea AA, Ismail AM (2019) Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus Sabdariffa L. extract. J Mol Struct 1197:603–609

    Article  CAS  Google Scholar 

  64. Mott NF, Davis EA (1979) Electronic process in non-crystalline materials. 2nd ed. USA: Oxford University Press

  65. Manandhar S, Luitel S, Dahal RK (2019) In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med 2019‏

  66. Carneiro JF, Aquino JM, Silva AJ, Barreiro JC, Cass QB, Rocha-Filho RC (2018) The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: Kinetics and follow-up of oxidation intermediates and antimicrobial activity. Chemosphere 206:674–681

    Article  CAS  PubMed  Google Scholar 

  67. Gao H, Xue Y, Zhang Y, Zhang Y, Meng J (2021) Engineering of Ag-nanoparticle-encapsulated intermediate layer by tannic acid-inspired chemistry towards thin film nanocomposite membranes of superior antibiofouling property. J Membr Sci 119922‏

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha'il–Saudi Arabia through project number RG-20-211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Menazea.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Mogbel, M.S., Elabbasy, M.T., Mohamed, R.S. et al. Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation. J Polym Res 28, 474 (2021). https://doi.org/10.1007/s10965-021-02838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02838-x

Keywords

Navigation