Skip to main content
Log in

Fabrication of castor oil-derived polyurethane mortar composites with energy saving and sound absorption characteristics

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyurethane (PU) consists of an organic chain unit joined by carbamate (-NHCOO-) links. A variety of raw materials are used in addition to castor oil to produce polyurethane foam composites. In this attempt, poly-hydroxyl compound (petroleum-based polyol) was substituted by natural oil (plant-based polyol) with 0 – 100 wt.% replacement to fabricate semi-rigid polyurethane foam composites. The polyurethane foam derived from castor oil (PU-CO) was characterized using infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, compression strength, tensile strength and density, respectively. The cement mortar containing polyurethane semi-rigid foam composites based on castor oil (CM-PU-CO) were also studied using infrared spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller (BET) analysis, powder X-ray diffraction, thermogravimetric analysis, thermal conductivity and sound absorption coefficient. The results indicated that CM-PU-CO composites are promising energy-saving materials, particularly under harsh climatic conditions, till 50% partial replacement with castor oil. The substitution of petroleum-based poly-hydroxyl compounds with a natural-based polyol, such as castor oil, was very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maamoun A, Mahmoud A, Nasr E, Soliman E, Sarwar MI, Zulfiqar S (2019) Fabrication of novel formulations from rigid polyurethane foams and mortar for potential applications in building industry. J Polym Res 26(11):1–10

    Article  Google Scholar 

  2. Mahmoud AA, Nasr EAA, Maamoun AAH (2017) The influence of polyurethane foam on the insulation characteristics of mortar pastes. Journal of Minerals and Materials Characterization and Engineering 5(2):49–61

    Article  Google Scholar 

  3. Zieleniewska M, Leszczyński MK, Szczepkowski L, Bryśkiewicz A, Krzyżowska M, Bień K, Ryszkowska J (2016) Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste. Polym Degrad Stab 132:78–86

    Article  CAS  Google Scholar 

  4. Akindoyo JO, Beg M, Ghazali S, Islam M, Jeyaratnam N, Yuvaraj A (2016) Polyurethane types, synthesis and applications–a review. RSC Adv 6(115):114453–114482

    Article  CAS  Google Scholar 

  5. Szycher M (1999) Szycher’s handbook of polyurethanes. CRC Press, New York

    Book  Google Scholar 

  6. Berardi U, Madzarevic J (2020) Microstructural analysis and blowing agent concentration in aged polyurethane and polyisocyanurate foams. Appl Therm Eng 164:114440

  7. Reignier J, Alcouffe P, Mechin F, Fenouillot F (2019) The morphology of rigid polyurethane foam matrix and its evolution with time during foaming–New insight by cryogenic scanning electron microscopy. J Colloid Interface Sci 552:153–165

    Article  CAS  PubMed  Google Scholar 

  8. Choe H, Choi Y, Kim JH (2019) Threshold cell diameter for high thermal insulation of water-blown rigid polyurethane foams. J Ind Eng Chem 73:344–350

    Article  CAS  Google Scholar 

  9. Mahmood N, Yuan Z, Schmidt J, Tymchyshyn M, Xu CC (2016) Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem 18(8):2385–2398

    Article  Google Scholar 

  10. Kattiyaboot T, Thongpin C (2016) Effect of natural oil based polyols on the properties of flexible polyurethane foams blown by distilled water. Energy Procedia 89:177–185

    Article  CAS  Google Scholar 

  11. Lee S-T, Ramesh NS (2004) Polymeric foams: mechanisms and materials. CRC Press

    Book  Google Scholar 

  12. Gama NV, Soares B, Freire CS, Silva R, Neto CP, Barros-Timmons A, Ferreira A (2015) Bio-based polyurethane foams toward applications beyond thermal insulation. Mater Des 76:77–85

    Article  CAS  Google Scholar 

  13. Das B, Konwar U, Mandal M, Karak N (2013) Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Ind Crops Prod 44:396–404

    Article  CAS  Google Scholar 

  14. Zhang D, Chen S (2020) The study of palm-oil-based bio-polyol on the morphological, acoustic and mechanical properties of flexible polyurethane foams. Polym Int 69(3):257–264

    Article  CAS  Google Scholar 

  15. Cheng Z, Li Q, Yan Z, Liao G, Zhang B, Yu Y, Yi C, Xu Z (2019) Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties. Prog Org Coat 127:194–201

    Article  CAS  Google Scholar 

  16. Mizera K, Ryszkowska J, Kurańska M, Prociak A (2020) The effect of rapeseed oil-based polyols on the thermal and mechanical properties of ureaurethane elastomers. Polym Bull 77(2):823–846

    Article  CAS  Google Scholar 

  17. Wang X, Zhang Y, Liang H, Zhou X, Fang C, Zhang C, Luo Y (2019) Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties. Carbohyd Polym 208:391–397

    Article  CAS  Google Scholar 

  18. Ji Y, Chen S, Zhu W (2020) The effect of pore numbers in the cell walls of soybean oil polyurethane foam on sound absorption performance. Appl Acoust 157:107010

  19. Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48(1):109–155

    Article  Google Scholar 

  20. Zhang L, Zhang M, Hu L, Zhou Y (2014) Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod 52:380–388

    Article  CAS  Google Scholar 

  21. Tavares L, Boas C, Schleder G, Nacas A, Rosa D, Santos D (2016) Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym Lett 10(11)

  22. Zhou D, Zhao C-Y, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605

    Article  CAS  Google Scholar 

  23. Aditya L, Mahlia T, Rismanchi B, Ng H, Hasan M, Metselaar H, Muraza O, Aditiya H (2017) A review on insulation materials for energy conservation in buildings. Renew Sustain Energy Rev 73:1352–1365

    Article  CAS  Google Scholar 

  24. Mohamed MG, Kuo SW (2019) Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites Polymers 11(1):26

    Google Scholar 

  25. Berardi U, Naldi M (2017) The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy Build 144:262–275

    Article  Google Scholar 

  26. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. iSmithers Rapra Publishing

  27. Lanzón M, García-Ruiz P (2008) Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr Build Mater 22(8):1798–1806

    Article  Google Scholar 

  28. Bartos P, Groot C, Hughes J (1999) International RILEM workshop on historic mortars: Characteristics and Tests. In: Proceedings of the International RILEM Workshop, Paisley, Scotland

  29. Pedro D, De Brito J, Veiga R (2013) Mortars made with fine granulate from shredded tires. J Mater Civ Eng 25(4):519–529

    Article  Google Scholar 

  30. West Conshohocken P (2016) ASTM D1621–16. Standard Test Method for Compressive Properties of Rigid Cellular Plastics, ASTM International

    Google Scholar 

  31. International A (2017) ASTM D1623–17, Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics. West Conshohocken, PA

  32. International A (2019) ASTM E1050–19, Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System. PA, West Conshohocken

  33. International A (2017) ASTM C518–17, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. West Conshohocken, PA

  34. Da Silva VR, Mosiewicki MA, Yoshida MI, Da Silva MC, Stefani PM, Marcovich NE (2013) Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: synthesis and physical chemical characterization. Polym Testing 32(2):438–445

    Article  Google Scholar 

  35. Corcuera M, Rueda L, d’Arlas BF, Arbelaiz A, Marieta C, Mondragon I, Eceiza A (2010) Microstructure and properties of polyurethanes derived from castor oil. Polym Degrad Stab 95(11):2175–2184

    Article  CAS  Google Scholar 

  36. Samy MM, Mohamed MG, Kuo S-W (2020) Pyrene-functionalized tetraphenylethylene polybenzoxazine for dispersing single-walled carbon nanotubes and energy storage. Compos Sci Technol 199:108360

  37. Donald L, Pavia L, Kriz GS (1979) Introduction to Spectroscopy: a Guide for Studentsof Organic Chemistry. Saunders College

  38. Richard T, Mercury L, Poulet F, d’Hendecourt L (2006) Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. J Colloid Interface Sci 304(1):125–136

    Article  CAS  PubMed  Google Scholar 

  39. Ylmén R, Jäglid U, Steenari BM, Panas I (2009) Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem Concr Res 39(5):433–439

  40. Mollah MY, Kesmez M, Cocke DL (2004) An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic (V) in Portland cement type-V. Sci Total Environ 325(1–3):255–262

    Article  CAS  PubMed  Google Scholar 

  41. Trezza M, Lavat A (2001) Analysis of the system 3CaO· Al2O3–CaSO4· 2H2O–CaCO3–H2O by FT-IR spectroscopy. Cem Concr Res 31(6):869–872

    Article  CAS  Google Scholar 

  42. Mollah M, Yu W, Schennach R, Cocke DL (2000) A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem Concr Res 30(2):267–273

    Article  CAS  Google Scholar 

  43. Minakshi M, Higley S, Baur C, Mitchell DR, Jones RT, Fichtner M (2019) Calcined chicken eggshell electrode for battery and supercapacitor applications. RSC Adv 9(46):26981–26995

    Article  CAS  Google Scholar 

  44. Dayanidhi K, Vadivel P, Jothi S, Eusuff NS (2020) Facile synthesis of Silver@ Eggshell nanocomposite: A heterogeneous catalyst for the removal of heavy metal ions, toxic dyes and microbial contaminants from water. J Environ Manage 271:110962

  45. Ding Q, Kang Z, He X, Wang M, Lin M, Lin H, Yang D-P (2019) Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole. Microchim Acta 186(7):1–9

    Article  Google Scholar 

  46. Hossain KMA (2006) High strength blended cement concrete incorporating volcanic ash: Performance at high temperatures. Cement Concr Compos 28(6):535–545

    Article  Google Scholar 

  47. Heikal M, El-Didamony H, Sokkary T, Ahmed I (2013) Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature. Constr Build Mater 38:1180–1190

    Article  CAS  Google Scholar 

  48. Verdolotti L, Di Maio E, Lavorgna M, Iannace S, Nicolais L (2008) Polyurethane–cement-based foams: Characterization and potential uses. J Appl Polym Sci 107(1):1–8

    Article  CAS  Google Scholar 

  49. Li Q, Zhang L, Gao X, Zhang J (2020) Effect of pulverized fuel ash, ground granulated blast-furnace slag and CO2 curing on performance of magnesium oxysulfate cement. Constr Build Mater 230:116990

  50. Yang R, Wang B, Li M, Zhang X, Li J (2019) Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols. Ind Crops Prod 136:121–128

    Article  CAS  Google Scholar 

  51. Bouargane B, Biyoune MG, Mabrouk A, Bachar A, Bakiz B, Ahsaine HA, Billah SM, Atbir A (2020) Experimental Investigation of the Effects of Synthesis Parameters on the Precipitation of Calcium Carbonate and Portlandite from Moroccan Phosphogypsum and Pure Gypsum Using Carbonation Route. Waste and Biomass Valorization 1–13

  52. Marcovich N, Kurańska M, Prociak A, Malewska E, Kulpa K (2017) Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind Crops Prod 102:88–96

    Article  CAS  Google Scholar 

  53. Veronese VB, Menger RK, Forte MMdC, Petzhold CL (2011) Rigid polyurethane foam based on modified vegetable oil. J Appl Polym Sci 120(1):530–537

    Article  CAS  Google Scholar 

  54. Zieleniewska M, Leszczyński MK, Kurańska M, Prociak A, Szczepkowski L, Krzyżowska M, Ryszkowska J (2015) Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Ind Crops Prod 74:887–897

    Article  CAS  Google Scholar 

  55. Lv S, Hu H, Zhang J, Luo X, Lei Y, Sun L (2017) Fabrication of GO/cement composites by incorporation of few-layered GO nanosheets and characterization of their crystal/chemical structure and properties. Nanomaterials 7(12):457

    Article  PubMed Central  Google Scholar 

  56. Palanisamy A, Rao B, Mehazabeen S (2011) Diethanolamides of castor oil as polyols for the development of water-blown polyurethane foam. J Polym Environ 19(3):698–705

    Article  CAS  Google Scholar 

  57. Aranberri I, Montes S, Wesołowska E, Rekondo A, Wrześniewska-Tosik K, Grande H-J (2019) Improved Thermal Insulating Properties of Renewable Polyol Based Polyurethane Foams Reinforced with Chicken Feathers. Polymers 11(12):2002

  58. Oprea S (2010) Synthesis and properties of polyurethane elastomers with castor oil as crosslinker. J Am Oil Chem Soc 87(3):313–320

    Article  CAS  Google Scholar 

  59. Leng W, Pan B (2019) Thermal Insulating and mechanical properties of cellulose nanofibrils modified polyurethane foam composite as structural insulated material. Forests 10(2):200

    Article  Google Scholar 

  60. Zhang M, Pan H, Zhang L, Hu L, Zhou Y (2014) Study of the mechanical, thermal properties and flame retardancy of rigid polyurethane foams prepared from modified castor-oil-based polyols. Ind Crops Prod 59:135–143

  61. Mosiewicki MA, Dell’Arciprete GA, Aranguren MI, Marcovich NE (2009) Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J Compos Mater 43(25):3057–3072

    Article  CAS  Google Scholar 

  62. Lee J, Jung I (2019) Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Appl Acoust 151:10–21

    Article  Google Scholar 

  63. Ji Y, Chen S, Cheng Y (2019) Synthesis and acoustic study of a new tung oil-based polyurethane composite foam with the addition of miscanthus lutarioriparius. Polymers 11(7):1144

    Article  Google Scholar 

  64. Wang Y, Zhang C, Ren L, Ichchou M, Galland MA, Bareille O (2013) Influences of rice hull in polyurethane foam on its sound absorption characteristics. Polym Compos 34(11):1847–1855

    Article  CAS  Google Scholar 

  65. Chen WH, Lee FC FC, Chiang DM (2000) On the acoustic absorption of porous materials with different surface shapes and perforated plates. J Sound Vib 237(2):337–355

    Article  Google Scholar 

  66. Sijia Liu KZ, Cui S, Shen X, Tan G (2018) A novel building material with low thermal conductivity: Rapid synthesis of foam concrete reinforced silica aerogel and energy performance simulation. Energy Build 177:385–393

    Article  Google Scholar 

  67. Campanella A, Bonnaillie L, Wool R (2009) Polyurethane foams from soyoil-based polyols. J Appl Polym Sci 112(4):2567–2578

    Article  CAS  Google Scholar 

  68. Modesti M, Lorenzetti A (2003) Improvement on fire behaviour of water blown PIR–PUR foams: Use of an halogen-free flame retardant. Eur Polymer J 39(2):263–268

    Article  CAS  Google Scholar 

  69. Bentz D (2007) Transient plane source measurements of the thermal properties of hydrating cement pastes. Mater Struct 40(10):1073–1080

    Article  CAS  Google Scholar 

  70. de Almeida Joana FP, Ribeiro Alexandra B, António SS (2021) Cement-based mortars production applying mining residues treated with an electro-based technology and a thermal treatment: Technical and economic effects. Constr Build Mater 280:1224832

    Google Scholar 

Download references

Acknowledgements

Prof. Dr. Sonia Zulfiqar is highly thankful to American University in Cairo (AUC) for financial support through STRC mini-grant and research project No. SSE-CHEM-S.Z.-FY19-FY20-FY21-RG(1-19)-2018-Oct-01-17-53-22. Dr. A. A. Maamoun would like to thank the Chemistry lab at Faculty of Engineering at Ain Shams University, Egypt. The authors would like to thank Royal Foam Co. Egypt for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonia Zulfiqar or A. A. Maamoun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A.A., Nasr, E.A., Zulfiqar, S. et al. Fabrication of castor oil-derived polyurethane mortar composites with energy saving and sound absorption characteristics. J Polym Res 28, 483 (2021). https://doi.org/10.1007/s10965-021-02836-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02836-z

Keywords

Navigation