Skip to main content
Log in

Thermally conducting hybrid polycarbonate composites with enhanced electromagnetic shielding efficiency

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The recent work evaluates the effect of ethylene methacrylate (EMA) as an impact modifier and the hybrid filler constitutes graphite flakes (GF), multiwalled carbon nanotubes (MWCNT), and steel fibers (SF) for the development of polycarbonate (PC) based conducting composite with high thermal conductivity and EMI shielding. The samples were initially optimized based on their mechanical properties, which were further characterized by thermal conductivity (TC) and electromagnetic interference shielding effectiveness (EMI SE). The thermal conductivity of the polycarbonate (PC) nanocomposites was found to increase by ~ 451% and ~ 602% at a significantly higher filler loading of 20 wt% and 30 wt% respectively without any processing difficulties. Further, the EMI SE values of the same have been enhanced in the range of -40.2 dB and -46.4 dB respectively, which falls within the range of commercially acceptable limits. Nonetheless, the results were indicative of the creation of a conductive network through the matrix, the electron microscopic and diffractometric studies confirmed the optimum dispersion of the hybrid filler system within the PC matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pradhan SS, Unnikrishnan L, Mohanty S, Nayak SK (2021) Effect of graphite flake and multi-walled carbon nanotube on thermal, mechanical, electrical, and electromagnetic interference shielding properties of polycarbonate nanocomposite. Polym Compos 1–13. https://doi.org/10.1002/pc.26115

  2. Pradhan SS, Unnikrishnan L, Mohanty S, Nayak SK (2020) Thermally Conducting Polymer Composites with EMI Shielding : A review. https://doi.org/10.1007/s11664-019-07908-x

    Article  Google Scholar 

  3. Fukuyama Y, Senda M, Kawai T et al (2014) The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene. J Therm Anal Calorim 117(3):1397–1405. https://doi.org/10.1007/s10973-014-3881-5

    Article  CAS  Google Scholar 

  4. Harish S, Ishikawa K, Einarsson E et al (2012) Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. Int J Heat Mass Transf 55(13–14):3885–3890. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.001

    Article  CAS  Google Scholar 

  5. Zhou T, Wang X, Liu X, Xiong D (2010) Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon N Y 48(4):1171–1176. https://doi.org/10.1016/j.carbon.2009.11.040

    Article  CAS  Google Scholar 

  6. Fang X, Ding Q, Fan L-W et al (2013) Thermal Conductivity Enhancement of Ethylene Glycol-Based Suspensions in the Presence of Silver Nanoparticles of Various Shapes. J Heat Transfer 136(3):034501. https://doi.org/10.1115/1.4025663

    Article  CAS  Google Scholar 

  7. Jagadeesh, Dani, Krishnan Kanny, and K. Prashantha. "A review on research and development of green composites from plant protein‐based polymers." Polymer Composites 38.8 (2017): 1504-1518.

    Article  Google Scholar 

  8. Guo J, Saha P, Liang J, Saha M, Grady BP (2013) Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites. J Therm Anal Calorim 113(2):467–474. https://doi.org/10.1007/s10973-012-2902-5

    Article  CAS  Google Scholar 

  9. Harada M, Hamaura N, Ochi M, Agari Y (2013) Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure. Compos Part B Eng 55:306–313. https://doi.org/10.1016/j.compositesb.2013.06.031

    Article  CAS  Google Scholar 

  10. Yu S, Kim DK, Park C, Hong SM, Koo CM (2014) Thermal conductivity behavior of SiC-Nylon 6,6 and hBN-Nylon 6,6 composites. Res Chem Intermed 40(1):33–40. https://doi.org/10.1007/s11164-013-1452-1

    Article  CAS  Google Scholar 

  11. Samy MM, Mohamed MG, El-Mahdy AFM, Mansoure TH, Wu KCW, Kuo SW (2021) High-Performance Supercapacitor Electrodes Prepared from Dispersions of Tetrabenzonaphthalene-Based Conjugated Microporous Polymers and Carbon Nanotubes. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c05720

    Article  PubMed  Google Scholar 

  12. Samy MM, Mohamed MG, Kuo SW (2020) Pyrene-functionalized tetraphenylethylene polybenzoxazine for dispersing single-walled carbon nanotubes and energy storage. Compos Sci Technol 199(May):108360. https://doi.org/10.1016/j.compscitech.2020.108360

    Article  CAS  Google Scholar 

  13. Zhang F, Li Q, Liu Y, Zhang S, Wu C, Guo W (2016) Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers. J Therm Anal Calorim 123(1):431–437. https://doi.org/10.1007/s10973-015-4903-7

    Article  CAS  Google Scholar 

  14. Ha SM, Kwon OH, Oh YG et al (2015) Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system. Sci Technol Adv Mater 16(6). https://doi.org/10.1088/1468-6996/16/6/065001

  15. Teng CC, Ma CCM, Chiou KC, Lee TM, Shih YF (2011) Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys 126(3):722–728. https://doi.org/10.1016/j.matchemphys.2010.12.053

    Article  CAS  Google Scholar 

  16. Yu W, Xie H, Chen L, Wang M, Wang W (2017) Synergistic Thermal Conductivity Enhancement of PC/ABS Composites Containing Alumina/ Magnesia/Graphene Nanoplatelets. Polym Compos 10(38):2221–2227. https://doi.org/10.1002/pc.23802

  17. Pak SY, Kim HM, Kim SY, Youn JR (2012) Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon N Y 50(13):4830–4838. https://doi.org/10.1016/j.carbon.2012.06.009

    Article  CAS  Google Scholar 

  18. Noh YJ, Kim SY (2015) Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polym Test 45:132–138. https://doi.org/10.1016/j.polymertesting.2015.06.003

    Article  CAS  Google Scholar 

  19. Sandip Maiti BBK (2015) Graphene Nanoplate and Multiwall Carbon Nanotube-Embedded Polycarbonate Hybrid Composites: High Electromagnetic Interference Shielding With Low Percolation Threshold. Polym Compos. https://doi.org/10.1002/pc.23384

    Article  Google Scholar 

  20. Babal AS, Gupta R, Singh BP, Singh VN, Dhakate SR, Mathur RB (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by an industrial viable twin screw extruder with back flow channel. RSC Adv 4(110):64649–64658. https://doi.org/10.1039/c4ra11319e

    Article  CAS  Google Scholar 

  21. Ameli A, Nofar M, Wang S, Park CB (2014). Lightweight Polypropylene / Stainless-Steel Fiber Composite Foams with Low Percolation for E ffi cient Electromagnetic Interference Shielding. https://doi.org/10.1021/am500445g

    Article  Google Scholar 

  22. Satapathy BK, Weidisch R, Pötschke P, Janke A (2005) Crack toughness behaviour of multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Macromol Rapid Commun 26(15):1246–1252. https://doi.org/10.1002/marc.200500234

    Article  CAS  Google Scholar 

  23. Bagotia N, Singh BP, Choudhary V, Sharma DK (2015) Excellent impact strength of ethylene-methyl acrylate copolymer toughened polycarbonate. RSC Adv 5(106):87589–87597. https://doi.org/10.1039/c5ra18024d

    Article  CAS  Google Scholar 

  24. Park DH, Lee YK, Park SS, Lee CS, Kim SH, Kim WN (2013) Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites. Macromol Res 21(8):905–910. https://doi.org/10.1007/s13233-013-1104-8

    Article  CAS  Google Scholar 

  25. Ofoegbu SU, Ferreira MGS, Zheludkevich ML (2019) Galvanically stimulated degradation of carbon-fiber reinforced polymer composites: A critical review. Materials (Basel) 12(4). https://doi.org/10.3390/ma12040651

  26. Vigneshkumar S, Rajasekaran T (2018) Experimental analysis on tribological behavior of fiber reinforced composites. IOP Conf Ser Mater Sci Eng 402(1):0–12. https://doi.org/10.1088/1757-899X/402/1/012198

  27. Falat T, Felba J, Matkowski P et al (2011) Electrical, thermal and mechanical properties of epoxy composites with hybrid micro- and nano-sized fillers for electronic packaging. Proc IEEE Conf Nanotechnol 97–101. https://doi.org/10.1109/NANO.2011.6144654

  28. Wang JZXQY (2018) pte Ac ce d M pt. Smart Mater Struct 0–8.

  29. Wang L, Qiu J, Sakai E (2015) Thermal Behavior and Mechanical Properties of Nanocomposites of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes. Polym Compos. https://doi.org/10.1002/pcPOLYMER

  30. Kim HS, Kim JH, Yang CM, Kim SY (2017) Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix. J Alloys Compd 690:274–280. https://doi.org/10.1016/j.jallcom.2016.08.141

    Article  CAS  Google Scholar 

  31. Agari Y, Tanaka M, Nagai S, Uno T (1987) Thermal conductivity of a polymer composite filled with mixtures of particles. J Appl Polym Sci 34(4):1429–1437. https://doi.org/10.1002/app.1987.070340408

    Article  CAS  Google Scholar 

  32. Nayak SK, Mohanty S, Nayak SK (2019) Silver (Ag) nanoparticle-decorated expanded graphite (EG) epoxy composite: evaluating thermal and electrical properties. J Mater Sci Mater Electron 30(23):20574–20587. https://doi.org/10.1007/s10854-019-02423-5

    Article  CAS  Google Scholar 

  33. Poosala A, Kurdsuk W, Aussawasathien D, Pentrakoon D (2014) Graphene nanoplatelet/multi-walled carbon nanotube/polycarbonate hybrid nanocomposites for electrostatic dissipative applications: Preparation and properties. Chiang Mai J Sci 41(5–2):1274–1286

    CAS  Google Scholar 

  34. Bagotia N, Choudhary V, Sharma DK (2017) Studies on toughened polycarbonate/multiwalled carbon nanotubes nanocomposites. Compos Part B Eng 124:101–110. https://doi.org/10.1016/j.compositesb.2017.05.037

    Article  CAS  Google Scholar 

  35. Bagotia N, Choudhary V, Sharma DK (2019) Synergistic Effect of Graphene/Multiwalled Carbon Nanotube Hybrid Fillers on Mechanical, Electrical and EMI Shielding Properties of Polycarbonate/Ethylene Methyl Acrylate Nanocomposites. Vol 159. Elsevier Ltd. https://doi.org/10.1016/j.compositesb.2018.10.009

  36. Maiti S, Khatua BB (2011) Properties of Polycarbonate (PC)/Multi-Wall Carbon Nanotube (MWCNT) Nanocomposites Prepared by Melt Blending. J Nanosci Nanotechnol 11(10):8613–8620. https://doi.org/10.1166/jnn.2011.4879

    Article  CAS  PubMed  Google Scholar 

  37. Rejisha CP, Soundararajan S, Sivapatham N, Palanivelu K (2014) Effect of MWCNT on Thermal, Mechanical, and Morphological Properties of Polybutylene Terephthalate/Polycarbonate Blends. J Polym 2014:1–7. https://doi.org/10.1155/2014/157137

    Article  Google Scholar 

  38. Ferreira C, Kuester S, Merlini C et al (2016) Processing and characterization of conductive composites based on poly ( styrene-b-ethylene-ran-butylene-b-styrene ) ( SEBS ) and carbon additives : A comparative study of expanded graphite and carbon black 84:236–247. https://doi.org/10.1016/j.compositesb.2015.09.001

  39. Chung DDL (2000) Materials for Electromagnetic Interference Shielding 9(June):350–354

    CAS  Google Scholar 

  40. Kashi S, Gupta RK, Baum T, Kao N, Bhattacharya SN (2016) Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide / graphene nanoplatelet nanocomposites. JMADE 95:119–126. https://doi.org/10.1016/j.matdes.2016.01.086

    Article  CAS  Google Scholar 

  41. Lin J, Lin Z, Pan Y, Huang C, Chen C, Lou C (2015) Polymer Composites Made of Multi-Walled Carbon Nanotubes and Graphene Nano-Sheets: Effects of Sandwich Structures on their Electromagnetic Interference Shielding Effectiveness. Compos Part B. https://doi.org/10.1016/j.compositesb.2015.11.014

    Article  Google Scholar 

  42. Chauhan SS, Abraham M, Choudhary V (2016) RSC Advances Electromagnetic shielding and mechanical properties of thermally stable poly ( ether ketone )/ multi-walled carbon nanotube composites prepared using a twin-screw extruder equipped with novel fractional mixing elements †. RSC Adv 6:113781–113790. https://doi.org/10.1039/C6RA22969G

    Article  CAS  Google Scholar 

  43. Online VA, Gupta R, Singh VN, Mathur RB, Dhakate SR (2014). RSC Adv. https://doi.org/10.1039/C4RA11319E

    Article  Google Scholar 

  44. Lecocq H, Garois N, Lhost O, Girard PF, Cassagnau P, Serghei A (2019) Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling. Compos Part B Eng 2020(189):107866. https://doi.org/10.1016/j.compositesb.2020.107866

    Article  CAS  Google Scholar 

  45. Dhawan TLDÆPSÆSK (2009) Improved Electromagnetic Interference Shielding Properties of MWCNT – PMMA Composites Using Layered Structures. 327–334. https://doi.org/10.1007/s11671-008-9246-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhransu S. Pradhan.

Ethics declarations

The study was funded by Bharat Electronics Limited, Panchkula Sanction Order No. BEPO/P10/4900251648. The authors declare that they have no conflict of intrest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S.S., Unnikrishnan, L., Mohanty, S. et al. Thermally conducting hybrid polycarbonate composites with enhanced electromagnetic shielding efficiency. J Polym Res 28, 463 (2021). https://doi.org/10.1007/s10965-021-02823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02823-4

Keywords

Navigation