Skip to main content
Log in

Synergistic effect of zeolite on the nitrogen-containing phosphinate salt-based acrylonitrile–butadiene–styrene flame-retardant composite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present work investigated the effects of the zeolite 4A on the flame retardancy and thermal stability of aluminum β-(p-nitrobenzamide) ethyl methyl phosphinate (AlNP) in acrylonitrile–butadiene–styrene copolymer (ABS). The synergistic effect between AlNP and zeolite 4A was assessed with cone calorimeter test (CCT), thermogravimetric measurement (TG), Fourier transform infrared spectroscopy (FTIR) analysis of the gaseous products, and scanning electron microscopy (SEM) characterization of the residues char. Keep the total loading of the additives at 25 wt.%; ABS filled with 22 wt.% AlNP and 3 wt.% zeolite 4A (ABS-AlNP22-A3) reaches a UL94 V0 classification with LOI value of 29.3%. By comparison, ABS with 25 wt.% AlNP alone (ABS-AlNP25) only passes the UL 94 V 1 rating with LOI value of 26.0%. CCT results verify that the zeolite 4A can depress the heat and smoke release of combustion. The peak heat release rate, total heat release, and total smoke release of ABS-AlNP22-A3 are reduced by 13.84%, 14.35%, and 20.4%, respectively, compared to ABS-AlNP25. The TG/FTIR analysis and morphology of the char residues from scanning electron microscopy further demonstrate that zeolite 4A could retard the volatilization of hydrocarbons and promote the char formation in the combustion process of ABS. The mechanism of synergistic effect of the zeolite 4A is proposed based on the experiment and related previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Teixeira FDM, Peres ACD, Gomes TS, Visconte LLY, Pacheo EBAV (2020) A review on the applicability of life cycle assessment to evaluate the technical and environmental properties of waste electrical and electronic equipment. J Polym Environ 4:1–17

    CAS  Google Scholar 

  2. Peterson AM (2019) Review of acrylonitrile butadiene styrene in fused filament fabrication: a plastics engineering-focused perspective. Addit Manuf 27:363–371

    CAS  Google Scholar 

  3. Olivera S, Handanahally B, Muralidhara B, Venkatesh K, Gopalakrishna K, Vivek C (2016) Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. J Mat Sci 51:3657–3674

    Article  CAS  Google Scholar 

  4. Schinazi G, de Almeida JRM, Pokorski JK, Schiraldi DA (2021) Bio-based flame retardation of acrylonitrile-butadiene-styrene. ACS Appl Polym Mater 3:372–388

    Article  CAS  Google Scholar 

  5. Kamelian FS, Saljoughi E, Nasirabadi PS, Mousavi SM (2018) Modifications and research potentials of acrylonitrile/butadiene/styrene (ABS) membranes: a review. Polym Compos 39:2835–2846

    Article  CAS  Google Scholar 

  6. Czegeny ZS, Jakab E, Blazso M, Bhaskar T, Sakata Y (2012) Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: Formation of chlorinated and brominated organic compounds. J Anal Appl Pyrolysis 96:69–77

    Article  CAS  Google Scholar 

  7. Miskolczi N, Hall WJ, Angyal A, Bartha L, Williams PT (2008) Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. J Anal Appl Pyrolysis 83:115–123

    Article  CAS  Google Scholar 

  8. Lim KS, Bee ST, Sin LT, Tee TT, Ratnam CT, Hui D, Rahmat AR (2016) A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos B Eng 84:155–174

    Article  CAS  Google Scholar 

  9. Velencoso MM, Batting A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chem Int Ed 57:10450–10467

    Article  CAS  Google Scholar 

  10. Wu NJ, Li XT (2014) Flame retardancy and synergistic flame-retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym Degrad Stab 105:265–276

    Article  CAS  Google Scholar 

  11. Nguyen C, Kim JH (2008) Synthesis of a novel nitrogen-phosphorus flame retardant based on phosphoramidate and its application to PC, PBT, EVA, and ABS. Macromol Res 16:620–625

    Article  CAS  Google Scholar 

  12. Yang YY, Luo H, Cao XL, Zhou F, Kong WB, Cai XF (2019) The synergistic effects of a novel intumescent flame-retardant poly-(4-nitrophenoxy)-phosphazene and ammonium polyphosphate on ABS systems. J Therm Anal Calorim 137:65–77

    Article  CAS  Google Scholar 

  13. Lu GW, Wu YQ, Zhang Y, Wang KL, Gao HX, Luo KM, Cao Z, Chen JF, Liu CL, Zhang L (2020) Surface laser-marking and mechanical properties of acrylonitrile-butadiene-styrene copolymer composites with organically modified montmorillonite. ACS Omega 5:19255–19267

    Article  CAS  Google Scholar 

  14. Hu DT, Zhou QQ, Zhou KQ (2019) Combined effects of layered nanofillers and intumescent flame retardant on thermal and fire behavior of ABS resin. J Appl Polym Sci 136:1–11

    Google Scholar 

  15. Wang BN, Chen MY, Yang BJ (2019) Modification and compounding of CaMgAl-layered double hydroxides and their application in the flame retardance of acrylonitrile-butadiene-styrene resin. Polymers 11:1623

    Article  CAS  Google Scholar 

  16. Wei P, Tian GH, Yu HZ, Qian Y (2013) Synthesis of a novel organic-inorganic hybrid mesoporous silica and its flame retardancy application in PC/ABS. Polym Degrad Stab 98:1022–1029

    Article  CAS  Google Scholar 

  17. Yang DD, Hu Y, Xu HP, Zhu LP (2013) Catalyzing carbonization of organophilic alpha-zirconium phosphate/acrylonitrile-butadiene-styrene copolymer nanocomposites. J Appl Polym Sci 130:3038–3042

    Article  CAS  Google Scholar 

  18. Ribeiro SPDS, Martins RC, Barbosa GM, Rocha MADF, Landesmann A, Nascimento MAC, Nascimento RSV (2020) Influence of the zeolite acidity on its synergistic action with a fame-retarding polymeric intumescent Formulation. J Mater Sci 55:619–630

    Article  CAS  Google Scholar 

  19. Lu CX, Wang J, Chen L, Fu Q, Cai XF (2010) The effect of adjuvant on the halogen-free intumescent flame-retardant ABS/PA6/SMA/APP blend. J Appl Polym Sci 118:1552–1560

    CAS  Google Scholar 

  20. Zhao GD, Pan ZL, Lu CX, Cai XF (2010) Halogen-free intumescent flame retardant acrylonitrile-butadiene-styrene/poly(ethylene terephthalate) blends. J Appl Polym Sci 118:1589–1597

    Article  CAS  Google Scholar 

  21. Xia Y, Liu SJ, Wang X, Han Y, Li J, Jian X (2008) The analysis of synergistic effects of zeolites applied in intumescent halogen-free flame-retardant abs composites. Polym Plast Technol Eng 47:613–618

    Article  CAS  Google Scholar 

  22. Yi JS, Liu Y, Cai XF (2013) The synergistic effect of adjuvant on the intumescent flame-retardant ABS with a novel charring agent. J Therm Anal Calorim 113:753–761

    Article  CAS  Google Scholar 

  23. Cavdar AD, Torun SB, Ertas M, Mengeloglu F (2019) Phosphate applied as fire retardants for microcrystalline cellulose filled thermoplastic composites. Fire Safety J 107:202–209

    Article  Google Scholar 

  24. Bourbigot S, Bras ML, Brwant P, Tremillon JM, Delobel R (1996) Zeolites: New synergistic agents for intumescent fire-retardant thermoplastic formulations-criteria for the choice of the zeolite. Fire Mater 20:145–154

    Article  CAS  Google Scholar 

  25. Bourbigot S, Bras ML, Delobel R, Decressain R, Amoureux JP (1996) Synergistic effect of zeolite in an intumescence process: study of the carbonaceous structures using solid-state NMR. J Chem Soc Faraday Trans 1:149–158

    Article  Google Scholar 

  26. Yang X, Wang H, Liu XQ, Liu JY (2020) Synthesis of a novel aluminium salt of nitrogen-containing alkylphosphinate with high char formation to flame retard acrylonitrile-butadiene-styrene. Royal Soc Open Sci 7:1–12

    CAS  Google Scholar 

  27. Vothi H, Congtranh N, Lam H (2019) Novel nitrogen−phosphorus flame retardant based on phosphonamidate: thermal stability and flame retardancy. ACS Omega 4:17791–17797

    Article  CAS  Google Scholar 

  28. Feng J, Cristina C, Alberto F (2016) Thermal decomposition investigation of ABS containing Lewis-acid type metal salts. Polym Degrad Stab 129:319–327

    Article  CAS  Google Scholar 

  29. Zhou KQ, Tang G, Gao R, Jiang SD (2018) In situ growth of 0 D silica nanospheres on 2D molybdenum disulfide nanosheets: towards reducing fire hazards of epoxy resin. J Hazard Mater 344:1078–1089

    Article  CAS  Google Scholar 

  30. Walters RN, Lyon RE (2010) Molar group contributions to polymer flammability. J Appl Poly Sci 87:548–563

    Article  Google Scholar 

  31. Munteanu BS, Vasile C (2005) Spectral and thermal characterization of styrene-butadiene copolymers with different architectures. J Optoelectron Adv Mater 7:3135–3148

    CAS  Google Scholar 

  32. Tang W, Han J, Zhang S, Sun J, Li H, Gu X (2018) Synthesis of 4A zeolite containing la from kaolinite and its effect on the flammability of polypropylene. Polym Compos 39:3461–3471

    Article  CAS  Google Scholar 

  33. Wu JY, Lee JC, Wu YT, Wu SH (2013) Thermal analyses of four adsorption materials for environmental pollution by DSC and TG. J Therm Anal Calorim 112:665–670

    Article  CAS  Google Scholar 

  34. Ganjkhanlou Y, Bulánek R, Kikhtyanin O, Frolich K (2018) Study on thermal stabilities and symmetries of chemisorbed species formed on K-zeolites upon CO2 adsorption by TPD and in situ IR spectroscopy. J Therm Anal Calorim 133:355–364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Central Instrument Facility (CIF), Jianghan University, for providing the experimental facilities required for this research work.

Funding

This work was supported by the team Innovation Project of Education Department of Hubei Province (T201935) and Project of state guiding regional development for Hubei province (2019ZYYD005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqing Liu, Jiyan Liu or Xianqi Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, H., Zou, L. et al. Synergistic effect of zeolite on the nitrogen-containing phosphinate salt-based acrylonitrile–butadiene–styrene flame-retardant composite. J Polym Res 29, 6 (2022). https://doi.org/10.1007/s10965-021-02811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02811-8

Keywords

Navigation