Skip to main content
Log in

Synthesis and antibacterial property of polyamide dendrimers based on tetraethyl-1,1,3,3-propanetetracarboxylate

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, a new family member of polyamide dendrimers which is based on the tetraethyl-1,1,3,3-propane tetra carboxylate was synthesized via a multi-step divergent approach. Initially, the tetraethyl-1,1,3,3-propane tetra carboxylate was synthesized through the reaction which was between the substituted malonic ester and the methylene bromide. The product was further modified through the reaction of 1,6-diamino hexane to prepare the core of the dendrimer; generation zero (G0), with tetra-amino functional groups. These amino groups have been employed in two consecutive amidification reactions. The first was with the adipoyl chloride. The second one was with Tris(hydroxymethyl) aminomethane fabricate the first generation (G1) with the branching points. Similarly, the second (G2), fourth (G4), and sixth (G6) generations were fabricated via multiple consecutive esterifications and amidification reactions. The progress of the dendrimers generation growth was monitored by 1H-NMR, 13C-NMR, FTIR, and UV–vis. Subsequently, the antimicrobial activity of the produced polyamide dendrimers were investigated, against gram-positive staphylococcus arouse (S. arouse) and gram-negative Escherichia coli (E. coli) bacteria. The results showed that G6NH2 had the highest antimicrobial activity against S. arouse and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Inoue K (2000) Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci 25:453–571

    Article  CAS  Google Scholar 

  2. Jiang W, Zhou Y, Yan D (2015) Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem Soc Rev 44:3874–3889

    Article  CAS  PubMed  Google Scholar 

  3. Olofsson K, Andren OCJ, Malkoch M (2014) Recent Advances on Crosslinked Dendritic Networks. J Appl Polym Sci 131:39876–39889

    Article  Google Scholar 

  4. Voit BI, Lederer A (2009) Hyperbranched and Highly Branched Polymer Architectures-Synthetic Strategies and Major Characterization Aspects. Chem Rev 109:5924–5973

    Article  CAS  PubMed  Google Scholar 

  5. Svenson S (2015) The dendrimer paradox – high medical expectations but poor clinical translation. Chem Soc Rev 44:4131–4144

    Article  CAS  PubMed  Google Scholar 

  6. Sharma A, Kakkar A (2015) Designing Dendrimer and Miktoarm Polymer Based Multi-Tasking Nanocarriers for Efficient Medical Therapy. Molecules 20:16987–17015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190

    Article  CAS  PubMed  Google Scholar 

  8. Castro RI, Forero-Doria O, Guzman L (2018) Perspectives of Dendrimer-based Nanoparticles in Cancer Therapy. An Acad Bras Cienc 90:2331–2346

    Article  CAS  PubMed  Google Scholar 

  9. Singh J, Jain K, Mehra NK, Jain NK (2016) Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol 44:1626–1634

    Article  CAS  PubMed  Google Scholar 

  10. Caminade A-M, Turrin C-O (2014) Dendrimers for drug delivery. J Mater Chem B 2:4055–4066

    Article  CAS  PubMed  Google Scholar 

  11. Santos A, Veiga F, Figueiras A (2020) Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials 65

  12. Neerman MF, Chen H-T, Parrish AR, Simanek EE (2004) Reduction of Drug Toxicity Using Dendrimers Based on Melamine. Mol Pharmaceutics 1:390–393

    Article  CAS  Google Scholar 

  13. Liu J, Gray WD, Davis ME, Luo Y (2012) Peptide-and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2:307–324

    Article  PubMed  PubMed Central  Google Scholar 

  14. Narsireddy A, Vijayashree K, Adimoolam MG, Manorama SV, Rao NM (2015) Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy. Int J Nanomed 10:6865–6878

    CAS  Google Scholar 

  15. Yunzhu L, Lingling W, Qingrong Q (2015) Synthesis of Novel Peptide Dendrimers PDL-GB2 and PDL-G2. Sci World J 2015:1–6

    Article  Google Scholar 

  16. Michlewska S, Ionov M, Maroto-Dıaz M, Szwed A, Ihnatsyeu-Kachan A, Abashkin V, Dzmitruk V, Rogalska A, Denel M, Gapinska M, Shcharbin D, Ramirez RG, Mata FJ, Bryszewska M (2019) Ruthenium dendrimers against acute promyelocytic leukemia: in vitro studies on HL-60 cells. Future Med Chem 11:1741–1756

    Article  CAS  PubMed  Google Scholar 

  17. Bielinska A, Kukowska-Latallo JF, Johnson J, Tomalia DA, James J, Baker R (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 24:2176–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A (2020) Applications and Limitations of Dendrimers in Biomedicine. Molecules 25:3982–4023

    Article  CAS  PubMed Central  Google Scholar 

  19. Bosman AW, Janssen HM, Meijer EW (1999) About Dendrimers: Structure, Physical Properties, and Applications. Chem Rev 99:1665–1688

    Article  CAS  PubMed  Google Scholar 

  20. Romagnoli B, Hayes W (2002) Chiral dendrimers-from architecturally interesting hyperbranched macromolecules to functional materials. J Mater Chem 12:767–799

    Article  Google Scholar 

  21. Akbari S (2013) The Application of Dendritic Material in Textile Engineering. Sci Bull Escorena 7:11–26

    Google Scholar 

  22. Reichardt C, Erfurt HP, Harms K, Schäfer G (2002) Syntheses, absolute configurations, and UV/Vis spectroscopic properties of new chiral tri- and pentamethinium streptocyanine dyes with 4-aminophenyl 4-methylphenyl sulfoxide endgroups. Eur J Org Chem 439–452

  23. Gholami M, Mohammadi R, Arzanlou M, Dourbash FA, Kouhsari E, Majidi G, Mohseni SM, Nazari S (2017) In vitro antibacterial activity of poly(amidoamine)-G7 dendrimer. BMC Infect Dis 17:1–11

    Article  Google Scholar 

  24. Calabretta MK, Kumar A, McDermott AM, Cai C (2007) Antibacterial Activities of Poly(amidoamine) Dendrimers Terminated with Amino and Poly(ethylene glycol) Groups. Biomacromol 8:1807–1811

    Article  CAS  Google Scholar 

  25. Wronska N, Majoral JP, Appelhans D, Bryszewska M, Lisowska K (2019) Synergistic Effects of Anionic/Cationic Dendrimers and Levofloxacin on Antibacterial Activities. Molecules 24:1–11

    Article  Google Scholar 

  26. Winnicka K, Wroblewska M, Wieczorek P, Sacha PT, Tryniszewska EA (2013) The Effect of PAMAM Dendrimers on the Antibacterial Activity of Antibiotics with Different Water Solubility. Molecules 18:8607–8617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holmes AM, Heylings JR, Wan K-W, Moss GP (2019) Antimicrobial efficacy and mechanism of action of poly(amidoamine) (PAMAM) dendrimers against opportunistic pathogens. Int J Antimicrob Agents 53:500–507

    Article  CAS  PubMed  Google Scholar 

  28. Elejmi A, Abdalgader A, Elhrari W, Sadawe IA, Alshoushan AA, Meiqal NH, Elbakay JA, Bensaber SM, Hermann A, Gbaj AM (2019) Polyamide Dendrimers and Spermine Interact with DNA. Arch Biomed Eng Biotechnol 3:1–6

    Google Scholar 

  29. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A New class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  30. Newkome GR, Yao ZQ, Baker GR, Gupta VK (1985) Cascade molecules: A new approch to micelles. J Org Chem 50:2003–2006

    Article  CAS  Google Scholar 

  31. Miller TM, Neenan TX (1990) Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem Mater 2:346–349

    Article  CAS  Google Scholar 

  32. Razavi B, Abbaszadeh R, Salami-Kalajahi M, Roghani-Mamaqani H (2020) Multi-responsive poly(amidoamin)-initiated dendritic-star supramolecular structures containing UV cross-linkable coumarin groups for smart durg delivery. J Mol Liq 319:1–13

    Article  Google Scholar 

  33. Tripathy S, Baro L, Das MK (2014) Dendrimer chemistry and host-guest interactions for drug targeting. Int J Pharm Sci Res 5:16–25

    Google Scholar 

  34. Frechet JM, Grayson SM (2001) Convergent Dendrons and Dendrimers: from Synthesis to Application. J Chem Rev 101:3819–3867

    Article  Google Scholar 

  35. Samadaei F, Salami-kalajahi M, Roghani-Mamaqani H, Banaei M (2015) A Structural study on ethylenediamine and poly(amidoamine)-functionalized graphene oxide: simultaneous reduction, functionaliztion, and formation of 3D structure. RSC Adv 5:71835–71843

    Article  CAS  Google Scholar 

  36. Lyu Z, Ding L, Huang AYT, Kao L, Peng L (2019) Poly(amidoamine) dendrimers: covalent and supramolecular synthesis. Materials Today Chemistry 13:34–48

    Article  CAS  Google Scholar 

  37. Song C, Shen M, Rodrigues J, Mignani S, Majoral J-P, Shi X (2020) Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coord Chem Rev 421:1–11

    Article  Google Scholar 

  38. Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H (2020) A review on synthesis and applications of dendrimers. J Iran Chem Soc 18:503–517

    Article  Google Scholar 

  39. Bondareva JV, Evlashin SA, Lukin OV (2020) Sulfonimide-based Dendrimers: Progress in Synthesis, Characterization, and Potential Applications. Polymers 12:1–27

    Article  Google Scholar 

  40. Eberson L (1958) On the reaction between substituted malonic esters and methylene bromide. J Acta Chem Scand 12

  41. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  PubMed  Google Scholar 

  42. Gautam SP, Gupta AK, Sharma A, Gautam T (2013) Synthesis and Analytical Characterization of Ester and Amine Terminated PAMAM Dendrimers. Global J Med Res Pharma Drug Dis Toxicol Med 13

  43. Undre SB, Pandya SR, Kumar V, Singh M (2016) Dendrimers as smart materials for developing the various applications in the field of biomedical sciences. Adv Mater Lett 7:502–516

    Article  CAS  Google Scholar 

  44. Fréchet JMJ, Hawker CJ, Gitsov I, Leon JW (1996) Dendrimers and Hyperbranched Polymers: Two Families of Three-Dimensional Macromolecules with Similar but Clearly Distinct Properties Journal of Macromolecular Science. Part A: Pure and Applied Chemistry 33:1399–1425

    Google Scholar 

  45. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst Dendrimers: Molecular-Level Control of Size. Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Edition English 29:138–175

    Google Scholar 

  46. Nilsson C (2008) Dendrimers: Synthesis, characterization and use in thiol-ene networks. Universitetsservice US AB Stockholm

  47. Caminade A-M, Laurent R, Majoral J-P (2005) Characterization of dendrimers. Adv Drug Delivery Rev 57:2130–2146

    Article  CAS  Google Scholar 

  48. Vuković J (2006) Synthesis and characterization of aliphatic hyperbranched polyesters. 2006 University Osnabruck

  49. Rietveld IB, Bedeaux D (2001) The Viscosity of Solutions of Poly(propylene imine) Dendrimers in Methanol. J Colloid Interface Sci 235:89–92

    Article  CAS  PubMed  Google Scholar 

  50. Long F, Yu F, Hui-Jun D, XinRu J, Ing-Qian L (1999) The intrinsic viscosity of polyamidoamine dendrimer. Chem J Chin Univ 20:1628–1632

  51. Peng XC, Peng XH, Liu SM, Zhao JQ (2009) Synthesis and properties of new amphoteric poly(amidoamine) dendrimers. eXPRESS Polym Lett 3:510–517

  52. Pavlov GM, Korneeva EV, Meijer EW (2002) Molecular characteristics of poly(propyleneimine) dendrimers as studied with translational diffusion and viscometry. Colloid Polym Sci 280:416–423

    Article  CAS  Google Scholar 

  53. Hedden RC, Bauer BJ (2003) Structure and dimensions of PAMAM/PEG dendrimer-star. Polymers Macromol 36:1829–1835

  54. Scott R, Wilson O, Crooks R (2005) Synthesis, Characterization, and Applications of Dendrimer-Encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There is no funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Elhrari.

Ethics declarations

Conflict of interest

There are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalgader, A., Elejmi, A., Elhrari, W. et al. Synthesis and antibacterial property of polyamide dendrimers based on tetraethyl-1,1,3,3-propanetetracarboxylate. J Polym Res 28, 462 (2021). https://doi.org/10.1007/s10965-021-02794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02794-6

Keywords

Navigation