Skip to main content
Log in

Peculiarities of reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of switchable RAFT agent

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This article dwells on the issues of investigating 1-cyano-1-methylethylmethyl(4-pyridinyl)dithiocarbamate in reversible addition-fragmentation chain transfer (RAFT) polymerization of wide range of monomers (acrylic and methacrylic acid, isobornyl acrylate, styrene, tert-butyl acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl acrylate, vinyl acetate, N-vinylpyrrolidone, n-butyl methacrylate, tert-butyl methacrylate, methyl methacrylate). As an “pH-switchable” RAFT agent, 1-cyano-1-methylethylmethyl(4-pyridinyl)dithiocarbamate (CMPC) can be applied in polymerization both more activated monomers (MAMs), and less activated monomers (LAMs). 4-toluenesulfonic acid monohydrate (p-TSOH), trifluoromethanesulfonic acid (TFOH), and trifluoroacetic acid (CF3COOH) were used to moderate activity of the RAFT agent. CMPC provides good control over polymerization of LAMs (vinyl acetate, N-vinylpyrrolidone). Addition of one equivalent of a protic acid makes CMPC more effective in controlling polymerization of some MAMs. The good control was achieved also in polymerization of styrene, acrylic acid, methacrylic acid, 2,2,3,3,4,4,5,5-octafluoropentyl acrylate monomers, and slightly worse in the case of isobornyl acrylate and tert-butyl acrylate. The poor control was shown for n-butyl methacrylate, tert-butyl methacrylate, methyl methacrylate. Besides, polyLAM-block-polyMAM (for instance, PVAc-b-PtBMA) with narrow molecular weight distributions was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Förster S, Antonietti M (1998) Amphiphilic block copolymers in structure‐controlled nanomaterial hybrids. 10(3): p. 195-217

  2. Ahmed M, Narain R (2013) Progress of RAFT based polymers in gene delivery. Prog Polym Sci 38(5):767–790

    Article  CAS  Google Scholar 

  3. Hazer B (2010) Amphiphilic poly (3-hydroxy alkanoate)s: Potential candidates for medical applications. p. 31-38

  4. Nourbakhsh A et al (2010) Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polym Bull 65(7):691–700

    Article  CAS  Google Scholar 

  5. Que Y et al (2016) Enhancing Photodynamic Therapy Efficacy by Using Fluorinated Nanoplatform. ACS Macro Lett 5(2):168–173

    Article  CAS  Google Scholar 

  6. Hill MR, Carmean RN, Sumerlin BS (2015) Expanding the scope of RAFT polymerization: recent advances and new horizons. Macromolecules 48(16):5459–5469

  7. Matyjaszewski K (2012) Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 45(10):4015–4039

    Article  CAS  Google Scholar 

  8. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38(1):63–235

    Article  CAS  Google Scholar 

  9. Chong YK, Moad G, Rizzardo E, Thang SH (2007) Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical-Induced Reduction. Macromolecules 40(13):4446–4455

    Article  CAS  Google Scholar 

  10. Rizzardo E, Chen M, Chong B, Moad G, Skidmore M, Thang SH (2007) In RAFT polymerization: adding to the picture. Macromol Symp Wiley Online Library: pp 104–116

  11. Moad G (2014) Mechanism and Kinetics of Dithiobenzoate-Mediated RAFT Polymerization–Status of the Dilemma. Macromol Chem Phys 215(1):9–26

    Article  CAS  Google Scholar 

  12. Petruczok CD, Barlow RF, Shipp DA (2008) Synthesis of poly (tert-butyl acrylate‐block‐vinyl acetate) copolymers by combining ATRP and RAFT polymerizations. J Polym Sci Part A: Polym Chem 46(21):7200–7206

    Article  CAS  Google Scholar 

  13. Hussain H, Tan BH, Gudipati CS, Liu Y, He CB, Davis TP (2008) Synthesis and self-assembly of poly (styrene)‐b‐poly (N‐vinylpyrrolidone) amphiphilic diblock copolymers made via a combined ATRP and MADIX approach. J Polym Sci Part A: Polym Chem 46(16):5604–5615

  14. Tong Y-Y, Dong Y-Q, Du F-S, Li Z-C (2008) Synthesis of Well-Defined Poly(vinyl acetate)-b-Polystyrene by Combination of ATRP and RAFT Polymerization. Macromolecules 41(20):7339–7346

  15. Huang C-F, Nicolaÿ R, Kwak Y, Chang F-C, Matyjaszewski K (2009) Homopolymerization and Block Copolymerization of N-Vinylpyrrolidone by ATRP and RAFT with Haloxanthate Inifers. Macromolecules 42(21):8198–8210

    Article  CAS  Google Scholar 

  16. Destarac M, Pees B, Boutevin B (2000) Radical telomerization of vinyl acetate with chloroform. Application to the synthesis of poly (vinyl acetate)-block‐polystyrene copolymers by consecutive telomerization and atom transfer radical polymerization. Macromol Chem Phys 201(11):1189–1199

    Article  CAS  Google Scholar 

  17. Nicolaÿ R, Kwak Y, Matyjaszewski K (2008) Synthesis of poly (vinyl acetate) block copolymers by successive RAFT and ATRP with a bromoxanthate iniferter. Chem Commun (42):5336–5338

    Article  CAS  Google Scholar 

  18. Debuigne A, Caille JR, Willet N, Jérôme R (2005) Synthesis of poly(vinyl acetate) and poly(vinyl alcohol) containing block copolymers by combination of cobalt-mediated radical polymerization and ATRP. Macromolecules 38(23):9488–9496

    Article  CAS  Google Scholar 

  19. Lee H-F, Kuo S-W, Huang C-F, Lu J-S, Chan S-C, Wang C-F, Chang F-C (2006) Hydrogen-Bonding Interactions Mediate the Phase Behavior of an A – B/C Block Copolymer/Homopolymer Blend Comprising Poly(Methyl Methacrylate-b-vinylpyrrolidone) and Poly(Vinylphenol). Macromolecules 39(16):5458–5465

    Article  CAS  Google Scholar 

  20. Paik H-j, Teodorescu M, Xia J, Matyjaszewski K (1999) Block Copolymerizations of Vinyl Acetate by Combination of Conventional and Atom Transfer Radical Polymerization. Macromolecules 32(21):7023–7031

    Article  CAS  Google Scholar 

  21. Bernaerts KV, Du Prez FE (2006) Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Prog Polym Sci 31(8):671–722

    Article  CAS  Google Scholar 

  22. Öztürk T et al (2020) Synthesis and characterization of the block copolymers using the novel bifunctional initiator by RAFT and FRP technics: evaluation of the primary polymerization parameters. J Polym Res 27(3):76

    Article  CAS  Google Scholar 

  23. Hazer B et al (2020) Novel poly(3-hydroxy butyrate) macro RAFT agent. Synthesis and characterization of thermoresponsive block copolymers. J Polym Res 27(6):147

    Article  CAS  Google Scholar 

  24. Şanal T et al (2015) Synthesis of pH- and thermo-responsive poly (ε-caprolactone-b-4-vinyl benzyl-g-dimethyl amino ethyl methacrylate) brush type graft copolymers via RAFT polymerization. J Polym Res 22(2):3

    Article  CAS  Google Scholar 

  25. Kwak Y, Tezuka M, Goto A, Fukuda T, Yamago S (2007) Kinetic Study on Role of Ditelluride in Organotellurium-Mediated Living Radical Polymerization (TERP). Macromolecules 40(6):1881–1885

    Article  CAS  Google Scholar 

  26. Yamago S, Ray B, Iida K, Yoshida J-i, Tada T, Yoshizawa K, Kwak Y, Goto A, Fukuda T (2004) Highly Versatile Organostibine Mediators for Living Radical Polymerization. J Am Chem Soc 126(43):13908–13909

    Article  CAS  PubMed  Google Scholar 

  27. Wayland BB, Poszmik G, Mukerjee SL, Fryd M (1994) Living Radical Polymerization of Acrylates by Organocobalt Porphyrin Complexes. J Am Chem Soc 116(17):7943–7944

    Article  CAS  Google Scholar 

  28. Debuigne A, Caille JR, Jérôme R (2005) Highly efficient cobalt-mediated radical polymerization of vinyl acetate. Angew Chem Int Ed Engl 44(7):1101–1104

    Article  CAS  PubMed  Google Scholar 

  29. Debuigne A, Warnant J, Jérôme R, Voets I, de Keizer A, Cohen Stuart MA, Detrembleur C (2008) Synthesis of Novel Well-Defined Poly(vinyl acetate)-b-poly(acrylonitrile) and Derivatized Water-Soluble Poly(vinyl alcohol)-b-poly(acrylic acid) Block Copolymers by Cobalt-Mediated Radical Polymerization. Macromolecules 41(7):2353–2360

    Article  CAS  Google Scholar 

  30. Bryaskova R, Willet N, Debuigne A, Jérôme R, Detrembleur C (2007) Synthesis of poly (vinyl acetate)-b‐polystyrene and poly (vinyl alcohol)‐b‐polystyrene copolymers by cobalt‐mediated radical polymerization. J Polym Sci Part A: Polym Chem 45(1):81–89

    Article  CAS  Google Scholar 

  31. Jenkins AD, Jones RG, Moad G (2009) Terminology for reversible-deactivation radical polymerization previously called” controlled” radical or” living”. radical polymerization Pure Appl Chem 82(2):483–491

    Article  CAS  Google Scholar 

  32. Yamago S (2006) Development of organotellurium-mediated and organostibine-mediated living radical polymerization reactions. J Polym Sci Part A: Polym Chem 44(1):1–12

    Article  CAS  Google Scholar 

  33. Yusa S-i, Yamago S, Sugahara M, Morikawa S, Yamamoto T, Morishima Y (2007) Thermo-Responsive Diblock Copolymers of Poly(N-isopropylacrylamide) and Poly(N-vinyl-2-pyrroridone) Synthesized via Organotellurium-Mediated Controlled Radical Polymerization (TERP). Macromolecules 40(16):5907–5915

    Article  CAS  Google Scholar 

  34. Ray B, Kotani M, Yamago S (2006) Highly Controlled Synthesis of Poly(N-vinylpyrrolidone) and Its Block Copolymers by Organostibine-Mediated Living Radical Polymerization. Macromolecules 39(16):5259–5265

    Article  CAS  Google Scholar 

  35. Ting SRS, Granville AM, Quémener D, Davis TP, Stenzel MH, Barner-Kowollik C (2007) RAFT Chemistry and Huisgen 1,3-Dipolar Cycloaddition: A Route to Block Copolymers of Vinyl Acetate and 6-O-Methacryloyl Mannose? Aust. J Chem 60(6):405–409

    CAS  Google Scholar 

  36. Quémener D, Davis TP, Barner-Kowollik C, Stenzel MH (2006) RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chem Commun (48):5051–5053

  37. Xue X, Zhu J, Zhang Z, Cheng Z, Tu Y, Zhu X (2010) Synthesis and characterization of azobenzene-functionalized poly(styrene)-b-poly(vinyl acetate) via the combination of RAFT and “click” chemistry. Polymer 51(14):3083–3090

    Article  CAS  Google Scholar 

  38. Nasrullah MJ, Vora A, Webster DC (2011) Block Copolymer Synthesis via a Combination of ATRP and RAFT Using Click Chemistry. Macromol Chem Phys 212(6):539–549

    Article  CAS  Google Scholar 

  39. Opsteen JA, van Hest JCM (2007) Modular synthesis of ABC type block copolymers by “click” chemistry. J Polym Sci Part A: Polym Chem 45(14):2913–2924

    Article  CAS  Google Scholar 

  40. Gregory A, Stenzel MH (2012) Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog Polym Sci 37(1):38–105

    Article  CAS  Google Scholar 

  41. Chernikova EV, Terpugova PS, Trifilov MY, Garina ES, Golubev VB, Sivtsov EV (2009) Controlled synthesis of acrylic homo- and copolymers in the presence of trithiocarbonates as reversible addition-fragmentation chain transfer agents. Polym Sci Ser A 51(6):658–666

    Article  Google Scholar 

  42. Benaglia M, Chen M, Chong YK, Moad G, Rizzardo E, Thang SH (2009) Polystyrene-block-poly(vinyl acetate) through the Use of a Switchable RAFT Agent. Macromolecules 42(24):9384–9386

    Article  CAS  Google Scholar 

  43. Göktaş M et al (2014) One-Step Synthesis of Triblock Copolymers via Simultaneous Reversible-Addition Fragmentation Chain Transfer (RAFT) and Ring-Opening Polymerization Using a Novel Difunctional Macro-RAFT Agent Based on Polyethylene Glycol. J Macromol Sci A 51(11):854–863

    Article  CAS  Google Scholar 

  44. Tao D et al (2017) Monodisperse Fiber-like Micelles of Controlled Length and Composition with an Oligo(p phenylenevinylene) Core via “Living” Crystallization-Driven Self-Assembly. J Am Chem Soc 139(21):7136–7139

    Article  CAS  PubMed  Google Scholar 

  45. Keddie DJ, Guerrero-Sanchez C, Moad G, Mulder RJ, Rizzardo E, Thang SH (2012) Chain Transfer Kinetics of Acid/Base Switchable N-Aryl-N-Pyridyl Dithiocarbamate RAFT Agents in Methyl Acrylate, N-Vinylcarbazole and Vinyl Acetate Polymerization. Macromolecules 45(10):4205–4215

    Article  CAS  Google Scholar 

  46. Benaglia M et al (2009) Universal (Switchable) RAFT Agents. J Am Chem Soc 131(20):6914–6915

    Article  CAS  PubMed  Google Scholar 

  47. Moad G et al (2011) Block copolymer synthesis through the use of switchable RAFT agents, in non-conventional functional block copolymers. Am Chem Soc p 81–102

  48. Wilfred LF, Armarego, CLLC (2013) Purification of Laboratory Chemicals. Seventh Edition. Elsevier, pp 1002. ISBN: 978-0-12-382161-4

  49. Llauro M-F, Loiseau J, Boisson F, Delolme F, Ladavière C, Claverie J (2004) Unexpected end-groups of poly(acrylic acid) prepared by RAFT polymerization. J Polym Sci Part A: Polym Chem 42(21):5439–5462

    Article  CAS  Google Scholar 

  50. Loiseau J, Doërr N, Suau JM, Egraz JB, Llauro MF, Ladavière C, Claverie J (2003) Synthesis and Characterization of Poly(acrylic acid) Produced by RAFT Polymerization. Application as a Very Efficient Dispersant of CaCO3, Kaolin, and TiO2. Macromolecules 36(9):3066–3077

    Article  CAS  Google Scholar 

  51. Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio Compounds [SC(Ph)S – R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 36(7):2256–2272

    Article  CAS  Google Scholar 

  52. Obrecht W, Plesch PH (1981) The polymerisation of styrene by trifluoroacetic acid. Die Makromol Chem 182(5):1459–1473

    Article  CAS  Google Scholar 

  53. Roberts GE, Davis TP, Heuts JPA, Ball GE (2002) Monomer Substituent Effects in Catalytic Chain Transfer Polymerization: tert-Butyl Methacrylate and Dimethyl Itaconate. Macromolecules 35(27):9954–9963

    Article  CAS  Google Scholar 

  54. Dervaux B, Junkers T, Schneider-Baumann M, Du Prez FE, Barner-Kowollik C (2009) Propagation rate coefficients of isobornyl acrylate, tert-butyl acrylate and 1-ethoxyethyl acrylate: A high frequency PLP-SEC study. J Polym Sci Part A: Polym Chem 47(23):6641–6654

    Article  CAS  Google Scholar 

  55. Till G, Junkers T, Guilhaus M, Barner-Kowollik C (2010) Mark–Houwink Parameters for the Universal Calibration of Acrylate, Methacrylate and Vinyl Acetate Polymers Determined by Online Size-Exclusion Chromatography—Mass Spectrometry. Macromol Chem Phys 211(5):520–528

    Article  CAS  Google Scholar 

  56. Moad G (2014) Mechanism and Kinetics of Dithiobenzoate-Mediated RAFT Polymerization – Status of the Dilemma. Macromol Chem Phys 215(1):9–26

    Article  CAS  Google Scholar 

  57. Chong YK et al (2003) Thiocarbonylthio Compounds [SC(Ph)S – R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 36(7):2256–2272

    Article  CAS  Google Scholar 

  58. Barner-Kowollik C et al (2001) Kinetic Investigations of Reversible Addition Fragmentation Chain Transfer Polymerizations: Cumyl Phenyldithioacetate Mediated Homopolymerizations of Styrene and Methyl Methacrylate. Macromolecules 34(22):7849–7857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Project № 19-03-00843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Grigoreva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polozov, E., Grigoreva, A., Vlasov, A. et al. Peculiarities of reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of switchable RAFT agent. J Polym Res 28, 400 (2021). https://doi.org/10.1007/s10965-021-02758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02758-w

Keywords

Navigation