Skip to main content
Log in

Influence of support layer pore size on interfacial polymerization and polyamide selective layer characterization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thin film composite (TFC) technology has been widely used to prepare reverse osmosis (RO) membrane, in which the relationship between support layer and selective layer plays a significant role. To thoroughly clarify the influence of support layer pore size on the properties of selective layer, herein, we prepared a series of polysulfone (PSf) support layers with different surface pore sizes by adjusting casting solution concentrations. Afterward, polyamide (PA) selective layers were prepared on top of PSf support layers via interfacial polymerization method. Detailed studies were performed to illustrate membrane-forming dynamics, TFC morphologies and membrane performances. The pore size of support layer has a substantial effect on the aqueous monomer diffusion behavior as well as selective layer morphologies and overall performances; specifically, resulting in differences in both thickness and roughness of PA layer and also inducing different membrane performances. Combined with anti-backflush experiments, we also provide an insight view into the interfacial adhesion between support layer and selective layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1(5):1–15

    Article  Google Scholar 

  2. Liang CZ et al (2021) Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalination. Nat Commun 12(1):1–12

    Article  Google Scholar 

  3. Liu LF et al (2006) Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC–MPD): I. Preparation and characterization of ICIC–MPD membrane. J Membr Sci 281(1–2):88–94

  4. Li L et al (2008) Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine. J Membr Sci 315(1–2):20–27

    CAS  Google Scholar 

  5. Xu R et al (2020) Preparation and performance of a charge-mosaic nanofiltration membrane with novel salt concentration sensitivity for the separation of salts and dyes. J Membr Sci 595:117472

  6. Kim SH, Kwak S-Y, Suzuki T (2005) Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. Environ Sci Technol 39(6):1764–1770

    Article  CAS  Google Scholar 

  7. Xu R et al (2018) Influence of l-lysine on the permeation and antifouling performance of polyamide thin film composite reverse osmosis membranes. RSC Adv 8(44):25236–25247

    Article  CAS  Google Scholar 

  8. Zhang H-L, Gao Y-B, Gai J-G (2018) Guanidinium-functionalized nanofiltration membranes integrating anti-fouling and antimicrobial effects. J Mater Chem A 6(15):6442–6454

    Article  CAS  Google Scholar 

  9. Zhao Q, Zhao DL, Chung TS (2021) Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. J Membr Sci 625:119158

  10. Lind ML et al (2010) Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ Sci Technol 44(21):8230–8235

    Article  CAS  Google Scholar 

  11. Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30(32):9625–9636

    Article  CAS  Google Scholar 

  12. Shi Q et al (2011) Grafting short-chain amino acids onto membrane surfaces to resist protein fouling. J Membr Sci 366(1–2):398–404

    Article  CAS  Google Scholar 

  13. Kessler D, Roth PJ, Theato P (2009) Reactive surface coatings based on polysilsesquioxanes: controlled functionalization for specific protein immobilization. Langmuir 25(17):10068–10076

    Article  CAS  Google Scholar 

  14. Zhang Q et al (2017) Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes. J Membr Sci 537:372–383

    Article  CAS  Google Scholar 

  15. Li X et al (2012) Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Ind Eng Chem Res 51(30):10039–10050

    Article  CAS  Google Scholar 

  16. Ghosh AK, Hoek EM (2009) Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J Membr Sci 336(1–2):140–148

    Article  CAS  Google Scholar 

  17. Askari M et al (2021) Optimization of TFC-PES hollow fiber membranes for reverse osmosis (RO) and osmotically assisted reverse osmosis (OARO) applications. J Membr Sci 625:119156

  18. Wang J et al (2018) Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J Membr Sci 556:374–383

    Article  CAS  Google Scholar 

  19. Singh PS et al (2006) Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. J Membr Sci 278(1–2):19–25

    Article  CAS  Google Scholar 

  20. Jimenez-Solomon MF et al (2013) Beneath the surface: Influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration. J Membr Sci 448:102–113

    Article  CAS  Google Scholar 

  21. Hirose M (1997) The relationship between polymer molecular structure of RO membrane skin layers and their RO performances. J Membr Sci 123(2):151–156

    Article  CAS  Google Scholar 

  22. Hu Y et al (2017) Molecular mechanism for liquid–liquid extraction: Two-film theory revisited. AIChE J 63(6):2464–2470

    Article  CAS  Google Scholar 

  23. Shi Q et al (2017) Poly (p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane. J Mater Chem A 5(26):13610–13624

    Article  CAS  Google Scholar 

  24. Kim HI, Kim SS (2006) Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. J Membr Sci 286(1–2):193–201

    Article  CAS  Google Scholar 

  25. Park S-J et al (2017) Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. J Membr Sci 526:52–59

    Article  CAS  Google Scholar 

  26. Lee J et al (2013) Water vapor sorption and free volume in the aromatic polyamide layer of reverse osmosis membranes. J Membr Sci 425:217–226

    Article  Google Scholar 

  27. Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53(9):1466–1467

    Article  CAS  Google Scholar 

  28. Wang J et al (2021) Conditional uncorrelation and efficient subset selection in sparse regression. IEEE Transactions on Cybernetics

  29. Wang J et al (2018) Multivariate correlation entropy and law discovery in large data sets. IEEE Intell Syst 33(5):47–54

    Article  Google Scholar 

  30. Liu T et al (2021) Construction of a composite microporous polyethylene membrane with enhanced fouling resistance for water treatment. J Membr Sci 618:118679

  31. Wang D, Schwartz DK (2020) Non-Brownian Interfacial Diffusion: Flying, Hopping, and Crawling. The Journal of Physical Chemistry C 124(37):19880–19891

    Article  CAS  Google Scholar 

  32. Ghosh AK et al (2008) Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J Membr Sci 311(1–2):34–45

    Article  CAS  Google Scholar 

  33. Duan M et al (2010) Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance. Sep Purif Technol 75(2):145–155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (NSFC 51503134, 51721091) and the State Key Laboratory of Polymer Materials Engineering (SKLPME 2017-3-02). We also would like to thank Meng Deng from Shiyanjia Lab (www.shiyanjia.com) for the SEM test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Kang or Ruizhang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Chen, D., Liu, T. et al. Influence of support layer pore size on interfacial polymerization and polyamide selective layer characterization. J Polym Res 28, 364 (2021). https://doi.org/10.1007/s10965-021-02736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02736-2

Keywords

Navigation