Skip to main content
Log in

In situ chemical synthesis and characterization of PAN/clay nanocomposite for potential removal of Pb+2 ions from aqueous media

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A green synthesis of polymer clay nanocomposites (PCNs) was carried out by in situ polymerization for their potential in order to remove the heavy metal from aqueous solution. At first stage, cloisite was functionalized using Vinyl Triethoxy Silane (VTES) to generate radicals on its surface. After functionalization, the monomer was grafted at these functional sites. The grafting was induced by varying initiator ratio (1.0 2.0 and 3. 0wt %). The maximum grafting of 78% was obtained with 2.0%wt initiator. To enhance number of active sorption sites the PNCs were further modified using hydroxylamine hydrochloride (NH2OH.HCl). The characterizations of prepared samples were carried out via Fourier Transform Infrared Spectroscopy (FTIR), X- Ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The adsorption potential of prepared sorbents was checked for lead metal ions via Atomic Absorption Spectroscopy (AAS). The prepared PCNs showed 92% adsorption potential of Pb(II) ion at 5.0 pH with 240 min contact time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thoreau HD (1895) Familiar Letters: The Writing of Henry David Thoreau. Bostan and New York: Houghton Miffen and Company. MDCCCVI

  2. Phan D, Debaufort F, Voilley A, Luu D (2009) Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends. J Food Eng 90:548–558

    Article  Google Scholar 

  3. Ebenstein A (2012) The consequences of industrialization: evidence from water pollution and digestive cancers in China. Rev Econ Stat REV ECON STAT 94(1):186–201

    Article  Google Scholar 

  4. Korça B, Demaku S (2021) Assessment of Contamination with Heavy Metals in Environment: Water, STERILE, Sludge and Soil around Kishnica Landfill. Kosovo Polish J Environ Stud 30:671–677

    Article  Google Scholar 

  5. Yang J, Zhou M, Yu K, Gin KYH, Hassan M, He Y (2022) Heavy metals in a typical city-river-reservoir system of East China: Multi-phase distribution, microbial response and ecological risk. J Environ Sci 112:343–354

    Article  Google Scholar 

  6. Krstić V (2021) Some Effective Methods for Treatment of Wastewater from Cu Production. Water Pollution and Remediation: Heavy Metals. Springer, Cham, pp 313–440

    Chapter  Google Scholar 

  7. Tomno RM, Nzeve JK, Mailu SN, Shitanda D, Waswa F (2020) Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality. Kenya Scientific African 9:00539

    Google Scholar 

  8. Usman M, Ahmed A, Yu B, Wang S, Shen Y, Cong H (2021) Simultaneous adsorption of heavy metals and organic dyes by β-Cyclodextrin-Chitosan based cross-linked adsorbent. Carbohydr Polym 255:117486

  9. Saleh MO, Hashem MA, Akl M (2021) Removal of Hg (II) metal ions from environmenta water samples using chemically modified natural sawdust. Egypt J Chem 64(2):1027–1034

    Google Scholar 

  10. Xue S, Xiao Y, Wang G, Fan J, Wan K, He Q, Miao Z (2021) Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid. COLLOID SURF A-PHYSICOCHEM ENG ASP 616:126333

  11. Singh E, Kumar A, Mishra R, You S, Singh L, Kumar S, Kumar R (2021) Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour Technol 320:124278

  12. Ganesan S (2021) Waste Fruit Cortexes for the Removal of Heavy Metals from Water. Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water. Springer, Cham, pp 323–350

    Chapter  Google Scholar 

  13. Zhang T, Wang W, Zhao Y, Bai H, Wen T, Kang S, Komarneni S (2020) Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem Eng J 127574

  14. Mnasri-Ghnimi S, Frini-Srasra N (2019) Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl Clay Sci 179:105151

  15. Zhou Q, Liu Y, Li T, Zhao H, Alessi DS, Liu W, Konhauser KO (2020) Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling. GCA 290:124–136

    CAS  Google Scholar 

  16. Zhang J, Manias E, Wilkie A (2008) Polymerically Modified Layered Silicates: An Effective Route to Nanocomposites. J nanoscience nanotech 8:1597–1615

    Article  CAS  Google Scholar 

  17. Sun L, Shi Zh, Wang H, Zhang K, Dastan D, Sun K, Fan R (2020) Ultrahigh Discharge Efficiency and Improved Energy Density in Rationally Designed Bilayer Polyetherimide-BaTiO3/P(VDF-HFP) Composites. J Mater Chem A 8:5750–5757

    Article  CAS  Google Scholar 

  18. Demirbas O, Alkan M, Dog˘an M, Turhan Y, Namli H, Turan P (2007) Electrokinetic and adsorption properties of sepiolite modified by 3-aminopropyltriethoxysilane. J Hazard Mater 149:650–656

    Article  CAS  Google Scholar 

  19. Zhu X, Yang J, Dastan D, Garmestani H, Fan R, Shi Zh (2019) Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos Part A 125:105521

  20. Pradhan NK, Das M, Palve YP, Nayak PL (2012) Synthesis and Characterization of Soya protein Isolate/Cloisite 30B (MMT) Nanocomposite for Controlled Release of Anticancer Drug Curcumin. I J Res Pharm Bio Sc 3(4):1513–1522

    CAS  Google Scholar 

  21. Sun L, Shi Z, Liang L, Wei S, Wang H, Dastan D, Sun K, Fan R (2020) Layer-structured BaTiO3/P(VDF-HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J Mater Chem C 8:10257–10265

    Article  CAS  Google Scholar 

  22. Aslani CK, Amik O (2021) Active Carbon/PAN composite adsorbent for uranium removal: modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl Radiat Isot 168:109474

  23. Park Y, Lee Y C, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162(2)685–695

  24. Faghihian H, Iravani M, Moayed M, Ghannadi-Maragheh M (2013) Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chem Eng J 222:41–48

    Article  CAS  Google Scholar 

  25. Feng ZQ, Yuan X, Wang T (2020) Porous polyacrylonitrile/graphene oxide nanofibers designed for high efficient adsorption of chromium ions (VI) in aqueous solution. Chem Eng J 392:123730

  26. Moroi G, Bilba D, Balba N (2004) Thermal degradation of mercury chelated polyacrylamidoxime. Polym r Degrad Stab 84:207–214

  27. Sun S, Shi Z, Sun L, Liang L, Dastan D, He B, Wang H, Huang M, Fan R (2021) Achieving Concurrent High Energy Density and Efficiency in All Polymer Layered Paraelectric/Ferroelectric Composites via Introducing a Moderate Layer, ACS Appl Mater Interfaces

  28. Sun L, Liang L, Shi Z, Wang H, Xie P, Dastan D, Sun K, Fan R (2020) Optimizing Strategy for the Dielectric Performance of Topological-structured Polymer Nanocomposites by Rationally Tailoring the Spatial Distribution of Nanofillers. Eng Sci 12:95–105

    CAS  Google Scholar 

  29. Wu C, Akhilesh KG, Patrick JS, Schmidt G (2010) Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective. Mater 3:2986–3005

    Article  CAS  Google Scholar 

  30. Zahra N (2012) Lead removal from water by low cost adsorbent: A Review. Pakistan J Anal Chem 13(1):1–8

    CAS  Google Scholar 

  31. Sahoo, P. K, Biswal, T, Samal R (2011) Microwave-assisted preparation of biodegradable water absorbent polyacrylonitrile/montmorillonite clay nanocomposite. J Nanotechnol 2011

  32. Gao B, Gao Y, Li Y (2010) Preparation and chelation adsorption property of composites chelating material poly (amidoxime)/ SiO2 towards heavy metal ions. Chem Eng J 158:542–549

    Article  CAS  Google Scholar 

  33. Badawy SM, Sokker HH, Dessouki AM (2006) Chelating Polymer Granules Prepared by Radiation- Induced Homopolymerization. II Characterizations J App Polymr Sc 99:1180–1187

    CAS  Google Scholar 

  34. Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation, J. Mater. Sci.: Mater. Electron 28:7784–7796

    CAS  Google Scholar 

  35. Asadzadeh M, Tajabadi F, Dastan D, Sangpour P, Shi Z, Taghavinia N (2021) Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications. Ceram Int 47:5487–5494

    Article  CAS  Google Scholar 

  36. Rehan M, Nada AA, Khattab TA, Abdelwahed NA, Abou El-Kheir AA (2020) Development of multifunctional polyacrylonitrile/silver nanocomposite films: Antimicrobial activity, catalytic activity, electrical conductivity, UV protection and SERS-active sensor. J MATER RES TECHNOL 9(4):9380–9394

    Article  CAS  Google Scholar 

  37. Espinola JGP, Oliveira SF, Lemus WES, Souza AG, Airoldi C, Moreira JCA (2000) Chemisorption of Cu-II and Co-II chlorides and beta-diketonates on silica gel functionalized with 3-aminopropyltrimethoxysilane. Colloids Surf A 166:45–50

    Article  CAS  Google Scholar 

  38. Alakhras FA, Dari KA, Mubarak MS (2005) Synthesis and chelating properties of some poly(amidoxime-hydroxamic acid) resins toward some trivalent lanthanide metal ions. J App Polymr Sc 97:691–696

    Article  CAS  Google Scholar 

  39. Horzum N, Shahwan T, Parlak O, Demir MM (2012) Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions and continuous flow. Chem Eng J 213:41–49

    Article  CAS  Google Scholar 

  40. Saeed K, Haider S, Oh T, Park S (2008) Preparation of amidoxime- modified polyacrylonitrile (PAN- oxime) nano- fiber and their applications to metal ion adsorption. J Mem Sc 322:400–405

    Article  CAS  Google Scholar 

  41. Akbari B, Pirhadi MT, Zandrahimi M (2011) Particle size characterization of nanoparticles–a practical approach .IUST 2(2):48-56

  42. Kim Y, White JL (2005) Formation of Polymer Nanocomposites with Various Organoclays. J Appl Polymr Sc 96:1888–1896

    Article  CAS  Google Scholar 

  43. Paul M, Alexandre M, Dege´e P, Calberg C, Je´roˆme R, Dubois P (2003) Exfoliated Polylactide/Clay Nanocomposites by In-Situ Coordination-Insertion Polymerization. Macromol Rapid Commun 24:561–566

    Article  CAS  Google Scholar 

  44. Karahaliou EK, Tarantili, (2009) PA Preparation of poly(Acrylonitrile–Butadiene–Styrene)/ montmorillonite nanocomposites and degradation studies during xxtrusion reprocessing. J Appl Polymr Sc 113:2271–2281

    Article  CAS  Google Scholar 

  45. Xue TJ, McKinney MA, Wilkie CA (1997) The thermal degradation of polyacrylonitrile. Polym Degrad Stab 58:193–202

    Article  CAS  Google Scholar 

  46. Preston CML, Amarasinghe G, Hopewell JL, Shanks RA, Mathys Z (2004) Polym Degrad Stab 84(3):533–544

    Article  CAS  Google Scholar 

  47. Malik DS, Jain CK, Yadav AK (2017) Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl Water Sci 7(5):2113–2136

    Article  CAS  Google Scholar 

  48. Jiao Y, Huang Z, Hu W, Li X, Yu Q, Wang Y, Zhou Y, Dastan D (2021) In-situ hybrid Cr3C2 and γ'-Ni3(Al, Cr) strengthened Ni matrix composites: microstructure and enhanced properties. Mater Sci Eng A 820:141524

  49. Tan G. L, Tang D, Dastan D, Jafari A, Shi Z, Chu QQ, Silva JPB, Yin XT (2021) Structures, Morphological Control, and Antibacterial Performance of Tungsten Oxide Thin Films. Ceram Int 17153–17160

  50. Jiao Y, Huang Z, Hu W, Li X, Yu Q, Wang Y, Zhou Y, Dastan D (2021) In-situ hybrid Cr3C2 and γ'-Ni3(Al, Cr) strengthened Ni matrix composites: microstructure and enhanced properties. Mater Sci Eng A 820:141524

  51. Dastan D (2017) Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl Phys A 123:699

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rida Batool or Faizah Altaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, R., Altaf, F., Hameed, M.U. et al. In situ chemical synthesis and characterization of PAN/clay nanocomposite for potential removal of Pb+2 ions from aqueous media. J Polym Res 28, 312 (2021). https://doi.org/10.1007/s10965-021-02674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02674-z

Keywords

Navigation