Skip to main content
Log in

Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Structural combining of polymer hydrogel network with mineral nanoparticles (metals, oxides, salts) is a very promising approach to create new functional materials with the specific properties. In this study, the cross-linked polymer hydrogels with embedded cadmium sulphide nanocrystals have been synthesized via radical copolymerization of acryl amide with acrylic acid or 2-(dimethylamino)ethyl methacrylate and N,N′-methylenebis(acrylamide) as cross-linker in aqueous media in the presence of nanoparticle precursor—cadmium salt, followed by subjecting the hydrogel obtained to gaseous hydrogen sulphide; this provides the in situ formation of CdS nanocrystals in pores of the hydrogel polymeric network. The effect of the Cd2+ cation concentration on the copolymerization kinetics, as well as on the gel-fraction content has been studied. The formation of CdS nanocrystals with the size of 3–6 nm has been proved by UV–vis spectroscopy and X-Ray diffractometry. Importantly, the nanocrystal size is largely determined by the density of the hydrogel polymer network. The compressive strain of hydrogels with CdS nanoparticles is significantly larger than that for the initial hydrogels containing Cd2+ cations only, apparently owing to the breaking of ionic and coordination bonds between metal cations and polar functional groups of matrix copolymer, which provide additional cross-linking of the hydrogel matrix. The obtained nanocomposite hydrogels are highly elastic materials characterized by a sufficiently high strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article.

References

  1. Mansur AAP, Caires AJ, Carvalho SM, Capanema NSV, Carvalho IC, Mansur HS (2019) Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro. Colloids Surf B 184:110507. https://doi.org/10.1016/j.colsurfb.2019.110507

    Article  CAS  Google Scholar 

  2. Abdallah OM, EL-Baghdady KZ, Khalil MMH, El Borhamy MI, Meligi GA (2020) Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites J Pol Res 27 74 https://doi.org/10.1007/s10965-020-02050-3

  3. Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3:14929–14941. https://doi.org/10.1039/C5TA02707A

    Article  CAS  Google Scholar 

  4. Bardajee GR, Hooshyar Z, Soleyman R (2017) Nanocomposites of sodium alginate biopolymer and CdTe/ZnS quantum dots for fluorescent determination of amantadine. J Pol Res 24:128. https://doi.org/10.1007/s10965-017-1247-y

    Article  CAS  Google Scholar 

  5. Reishofer D, Rath T, Ehmann HM, Gspan C, Dunst S (2017) Biobased cellulosic–CuInS2 nanocomposites for optoelectronic applications. ACS Sustainable Chem Eng 5:3115–3122. https://doi.org/10.1021/acssuschemeng.6b02871

    Article  CAS  Google Scholar 

  6. Pinto RJB, Neves MC, Neto CP, Trindade T (2012) In: Ebrahimi F (ed) Nanocomposites - new trends and developments. IntechOpen, Rijeka

  7. Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13:214. https://doi.org/10.1186/s11671-018-2624-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mandal S, De S (2016) Copper nanoparticles in AOT “revisited”-direct micelles versus reverse micelles. Mater Chem Phys 183:410–421. https://doi.org/10.1016/j.matchemphys.2016.08.046

    Article  CAS  Google Scholar 

  9. Sarcina L, García-Manrique P, Gutierrez G, Ditaranto N, Cioffi N, Matos M, Blanco-Lopez MdC (2020) Cu nanoparticle-loaded nanovesicles with antibiofilm properties. Part I: Synthesis of new hybrid nanostructures. Nanomaterials 10(8):1542. https://doi.org/10.3390/nano10081542

  10. Fan X, Domszy RC, Hu N, Yang AJ, Yang J, David AE (2019) Synthesis of silica–alginate nanoparticles and their potential application as pH-responsive drug carriers. J Sol-Gel Sci Technol 91:11–20. https://doi.org/10.1007/s10971-019-04995-4

    Article  CAS  Google Scholar 

  11. Svit KA, Zarubanov AA, Duda TA, Trubina SV, Zvereva VV, Fedosenko EV, Zhuravlev KS (2021) Crystal structure and predominant defects in cds quantum dots fabricated by the Langmuir-Blodgett method. Langmuir 37:5651–5658. https://doi.org/10.1021/acs.langmuir.1c00526

    Article  CAS  PubMed  Google Scholar 

  12. Tokarev V, Shevchuk O, Ilchuk H, Tokarev S, Kusnezh V, Korbutyak D, Budzulyak S, Kalytchuk S, Bukartyk N (2015) Thin polymer films with embedded CdS nanocrystals. Colloid Polym Sci 293:1159–1169. https://doi.org/10.1007/s00396-015-3500-4

    Article  CAS  Google Scholar 

  13. Shevchuk O, Tokarev S, Serdiuk V, Chobit M, Nikitishyn E, Dolynska L, Ilchuk H, Kusnezh V, Tokarev V (2015) Thin polymer films grafted to the solid surface with in situ synthesized CdS nanocrystals. J Polym Res 22:172. https://doi.org/10.1007/s10965-015-0807-2

    Article  CAS  Google Scholar 

  14. Chu C, Su Z (2016) Gold-decorated platinum nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for methanol oxidation. Appl Catal A 517:67–72. https://doi.org/10.1016/j.apcata.2016.03.002

    Article  CAS  Google Scholar 

  15. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130. https://doi.org/10.3390/nano5042054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang QG, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343. https://doi.org/10.1038/nature08693

    Article  CAS  PubMed  Google Scholar 

  17. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010. https://doi.org/10.1002/advs.201400010

    Article  CAS  Google Scholar 

  18. Gun’ko V, Savina I, Mikhalovsky S (2017) Properties of water bound in hydrogels Gels 3 37https://doi.org/10.3390/gels3040037

  19. Alam TM, Childress KK, Pastoor K, Rice CV (2014) Characterization of free, restricted, and entrapped water environments in poly(N-isopropyl acrylamide) hydrogels via 1H HRMAS PFG NMR spectroscopy. J Polym Sci, Part B: Polym Phys 52:1521–1527. https://doi.org/10.1002/polb.23591

    Article  CAS  Google Scholar 

  20. Sahiner N, Sel K, Meral K, Onganer Y, Butun S, Ozay O, Silan C (2011) Hydrogel templated CdS quantum dots synthesis and their characterization. Colloids Surf A 389:6–11. https://doi.org/10.1016/j.colsurfa.2011.09.006

    Article  CAS  Google Scholar 

  21. Chang C, Peng J, Zhang L, Pang D-W (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776. https://doi.org/10.1039/b908835k

    Article  CAS  Google Scholar 

  22. Guo M, Jiang M (2010) Supramolecular hydrogels with CdS quantum dots incorporated by host-guest interactions. Macromol Rapid Commun 31:1736–1739. https://doi.org/10.1002/marc.201000255

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Gao J, Wang X, Mei S, Zhao R, Hao C, Wu Y, Zhai X, Liu Y (2017) Polyacrylamide hydrogel as a template in situ synthesis of CdS nanoparticles with high photocatalytic activity and photostability. J Nanopart Res 19:350. https://doi.org/10.1007/s11051-017-4048-7

    Article  CAS  Google Scholar 

  24. Li F, Yang J, Gao J, Liu Y, Gong Y (2020) Enhanced photocatalytic hydrogen production of CdS embedded in cationic hydrogel. Int J Hydrogen Energy 45:1969–1980. https://doi.org/10.1016/j.ijhydene.2019.11.140

    Article  CAS  Google Scholar 

  25. Feng X-D (1992) The role of amine in vinyl radical polymerization. Macromol Symp 63:1–18. https://doi.org/10.1002/masy.19920630105

    Article  CAS  Google Scholar 

  26. Cheronis ND, Ma TS (1964) Organic functional group analysis by micro and semimicro methods. Interscience Publishers, New York

    Google Scholar 

  27. Hulse R, Cain J (1991) Structural Mechanics. Macmillan Work Out Series. Palgrave, London

  28. Yoffe AD (2002) Low-dimensional systems: quantum size efects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 51:799–890. https://doi.org/10.1080/00018730110117451

    Article  Google Scholar 

  29. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168. https://doi.org/10.1002/smll.200800841

    Article  CAS  PubMed  Google Scholar 

  30. Guo S, Wan W, Chen C, Chen WH (2013) Thermal decomposition kinetic evaluation and its thermal hazards prediction of AIBN. J Therm Anal Calorim 113:1169–1176. https://doi.org/10.1007/s10973-013-2993-7

    Article  CAS  Google Scholar 

  31. Efanov MV (2011) Study of kinetic degradation of ammonium peroxydisulphate in ammonia solution in present of wood. Advances in Current Natural Sciences 11:67–70. https://www.natural-sciences.ru/pdf/2011/11/15.pdf

  32. Henton DE, Powell C, Reim RE (1998) The decomposition of sodium persulfate in the presence of acrylic acid. J Appl Polym Sci 64:591–600. https://doi.org/10.1002/(SICI)1097-4628(19970418)64:3%3c591::AID-APP15%3e3.0.CO;2-0

    Article  Google Scholar 

  33. Socrates G (2002) Infrared and Raman Characteristic Group Frequencies: Tables and Charts., J. Wiley and Sons, Chichester, UK

  34. An Z, Gao J, Wang L, Zhao X, Yao H, Zhang M, Tian Q, Liu Y (2019) Novel microreactors of polyacrylamide (PAM)-CdS microgels for admirable photocatalytic H2 production under visible light. Int J Hydrogen Energ 44(3):1514–1524. https://doi.org/10.1016/j.ijhydene.2018.11.211

    Article  CAS  Google Scholar 

  35. Nesrinne S, Aliouche D (2017) Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arabian J Chem 10:539–547. https://doi.org/10.1016/j.arabjc.2013.11.027

    Article  CAS  Google Scholar 

  36. Pandian SRK, Deepak V, Kalishwaralal K, Gurunathan S (2011) Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzyme Microb Tech 48(319):325

    Google Scholar 

  37. Raut BT, Chougule MA, Nalage SR, Dalavi DS, Mali S, Patil PS, Patil VB (2012) CSA doped polyaniline/CdS organic–inorganic nanohybrid: Physical and gas sensing properties. Ceram Int 38:5501–5506. https://doi.org/10.1016/j.ceramint.2012.03.064

    Article  CAS  Google Scholar 

  38. Ni Y, Hao H, Cao X, Su S, Zhang Y, Wei X (2006) Preparation, characterization, and optical, electrochemical property research of CdS/PAM nanocomposites. J Phys Chem B 110:17347–17352. https://doi.org/10.1021/jp061662z

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez P, Munoz-Aguirre N, San-Martin Martınez E, Gonzalez G, Zelaya O, Mendoza J (2008) Formation of CdS nanoparticles using starch as capping agent. App Surf Sci 255:740–742. https://doi.org/10.1016/j.apsusc.2008.07.032

    Article  CAS  Google Scholar 

  40. Rodriguez-Fragoso P, Gonzalez de la Cruz G, Tomas SA, Mendoza-Alvarez JG, Zelaya Angel O (2010) Photoluminescence of CdS nanoparticles embedded in a starch matrix. J Lumin 130:1128–1133. https://doi.org/10.1016/j.jlumin.2010.02.008

  41. Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14:3338–3345. https://doi.org/10.1021/bm400993f

    Article  CAS  Google Scholar 

  42. Wurm F, Rietzler B, Pham T, Bechtold T (2020) Multivalent ions as reactive crosslinkers for biopolymers—a review. Molecules 25:1840. https://doi.org/10.3390/molecules25081840

    Article  CAS  PubMed Central  Google Scholar 

  43. Fei ST, Phelps MWB, Wang Y, Barrett E, Gandhi F, Allcock HR (2006) A redox responsive polymeric gel based on ionic crosslinking. Soft Matter 2:397–401. https://doi.org/10.1039/B516972K

    Article  CAS  PubMed  Google Scholar 

  44. Speight JG (2004) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

The financial support of the Ministry of Education and Science of Ukraine (Project # 0117U004445) is gratefully acknowledged.

Funding

This study was funded by Ministry of Education and Science of Ukraine (Project # 0117U004445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Shevchuk.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchuk, O., Bukartyk, N., Chobit, M. et al. Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. J Polym Res 28, 331 (2021). https://doi.org/10.1007/s10965-021-02662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02662-3

Keywords

Navigation