Skip to main content
Log in

Dodecyl-substituted poly(3,4-ethylenedioxyselenophene): polymerization and its solution-processable applications for electrochromic and organic solar cells

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Considering the significant synthetic efforts for the preparation of poly(3,4-ethylenedioxythiophene) (PEDOT) and its soluble derivatives, very little is known about poly(3,4-ethylenedioxyselenophene) (PEDOS), especially for soluble polymers. Here, we report the synthesis of soluble dodecyl-substituted poly(3,4-ethylenedioxyselenophene) (PEDOS-C12) by two different chemical polymerization methods- transition metal-mediated and Grignard metathesis (GRIM). The polymer PEDOS-C12 prepared by GRIM was characterized using NMR, gel permeation chromatography, UV–vis-NIR spectroscopy, cyclic voltammetry and shows high conductivity. The obtained neutral polymer PEDOS-C12 (hydrazine-dedoped) prepared by GRIM was used for spray processable electrochromic property and organic solar cells. The optical contrast ratio and coloration efficiency of the polymer film were found to be 20.8% and 131.9 cm2/C at 770 nm. The photovoltaic device was fabricated using solution-processable PEDOS-C12 as hole transport layer (HTL) with the simple geometry ITO/PEDOS-C12(HTL)/P3HT:PC61BM/Al and achieved a power conversion efficiency up to ~ 0.52% under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References 

  1. Skotheim TA, Reynolds JR (eds) (2007) Handbook of conducting polymers, 3rd ed. CRC Press, Boca Raton, FL

  2. Perepichka IF, Perepichka DF (eds) (2009) Handbook of thiophene-based materials. Wiley-VCH, Chichester, UK

  3. Swager TM (2017) 50th anniversary perspective: Conducting/semiconducting conjugated polymers. A personal perspective on the past and the future. Macromolecules 50:4867–4886

    Article  CAS  Google Scholar 

  4. Mishra A, Ma CQ, Bäuerle P (2009) Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev 109:1141–1276

    Article  CAS  Google Scholar 

  5. Gupta S, Patra A (2000) Facile polymerization method for poly(3,4-ethylenedioxythiophene) and related polymers using iodine vapour. New J Chem 44:6883–6888

    Article  Google Scholar 

  6. Chen J, Shao M, Xiao K, He Z, Li D, Lokitz BS, Hensley DK, Kilbey SM, Anthony JE, Keum JK, Rondinone AJ, Lee W-Y, Hong S, Bao Z (2013) Conjugated polymer-mediated polymorphism of a high performance, small-molecule organic semiconductor with tuned intermolecular interactions, enhanced long-range order, and charge transport. Chem Mater 25:4378–4386

    Article  CAS  Google Scholar 

  7. Patra A, Bendikov M, Chand S (2014) Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials. Acc Chem Res 47:1465–1474

    Article  CAS  Google Scholar 

  8. Patra A, Kumar R, Chand S (2014) Selenium-containing p-conjugated polymers for organic solar cells. Isr J Chem 54:621–641

    Article  CAS  Google Scholar 

  9. Patra A, Bendikov M (2010) Polyselenophenes. J Mater Chem 20:422–433

    Article  CAS  Google Scholar 

  10. Yadav P, Patra A (2020) Recent advances in poly(3,4-ethylenedioxyselenophene) and related polymers. Polym Chem 11:7275–7292

    Article  CAS  Google Scholar 

  11. Yadav P, Singhal S, Patra A (2020) Electropolymerized poly(3,4-ethylenedioxyselenophene) on flexiblesubstrate: A comparative study of electronic and electrochromic properties with sulfur analogue and rigid substrate. Synth Met 260:116264

    Article  CAS  Google Scholar 

  12. Yadav P, Naqvi S, Patra A (2020) Poly (3, 4-ethylenedioxyselenophene): effect of solvent and electrolyte on electrodeposition, optoelectronic and electrochromic properties. RSC Adv 10:12395–12406

    Article  CAS  Google Scholar 

  13. Patra A, Wijsboom YH, Zade SS, Li M, Sheynin Y, Leitus G, Bendikov M (2008) Poly(3,4-ethylenedioxyselenophene). J Am Chem Soc 130:6734–6736

    Article  CAS  Google Scholar 

  14. Zhang W, Zhang W, Xue Z, Xue Y, Xu J, Chen S, Zhang G (2018) Effect of chalcogen substitution on aqueous dispersions of poly(3,4-ethylenedioxythiophene)s:poly(4-styrenesulfonate) and their flexible conducting films. J Mater Sci Mater Electron 29:18566–18572

    Article  CAS  Google Scholar 

  15. Patra A, Agrawal V, Bhargav R, Shahjad D, Bhardwaj S, Chand Y, Sheynin MB (2015) Metal free conducting PEDOS, PEDOT, and their analogues via an unusual bromine-catalyzed polymerization. Macromolecules 48:8760–8764

    Article  CAS  Google Scholar 

  16. Li M, Sheynin Y, Patra A, Bendikov M (2009) Tuning the electrochromic properties of poly(alkyl-3,4-ethylenedioxyselenophenes) having high contrast ratio and coloration efficiency. Chem Mater 21:2482–2488

    Article  CAS  Google Scholar 

  17. Li M, Patra A, Sheynin Y, Bendikov M (2009) Hexyl-derivatized poly(3,4-ethylenedioxyselenophene): novel highly stable organic electrochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage. Adv Mater 21:1707–1711

    Article  CAS  Google Scholar 

  18. Amb CM, Beaujuge PM, Reynolds JR (2010) Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach. Adv Mater 22:724–728

    Article  CAS  Google Scholar 

  19. Kumar A, Reynolds JR (1996) Soluble alkyl-substituted poly(ethylenedioxythiophenes) as electrochromic materials. Macromolecules 29:7629–7630

    Article  CAS  Google Scholar 

  20. Henson ZB, Müllen K, Bazan GC (2012) Design strategies for organic semiconductors beyond the molecular formula. Nat Chem 4:699–704

    Article  CAS  Google Scholar 

  21. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  CAS  Google Scholar 

  22. Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Organic photoresponse materials and devices. Chem Soc Rev 41:1754–1808

    Article  CAS  Google Scholar 

  23. Ye L, Zhang S, Huo L, Zhang M, Hou J (2014) Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc Chem Res 47:1595–1603

    Article  CAS  Google Scholar 

  24. Shahjad R, Bhargav D, Bhardwaj A, Mishra AP (2017) Synthesis and characterization of benzodithiophene-chalcogenophene based copolymers: a comparative study of optoelectronic properties and photovoltaic applications. Macromol Chem Phys 218:1700038

    Article  Google Scholar 

  25. Hains AW, Ramanan C, Irwin MD, Liu J, Wasielewski MR, Marks TJ (2010) Designed bithiophene-based interfacial layer for high-efficiency bulk-heterojunction organic photovoltaic cells. Importance of interfacial energy level matching. ACS Appl Mater Interfaces 2:175–185

    Article  CAS  Google Scholar 

  26. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174

    Article  CAS  Google Scholar 

  27. Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L (2012) Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv Mater 24:2228–2233

    Article  CAS  Google Scholar 

  28. Jouad ZE, Morsli M, Louarn G, Cattin L, Addou M, Bernède J (2015) Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer. Sol Energ Mat Sol Cells 141:429–435

    Article  Google Scholar 

  29. Chaudhary N, Kesari JP, Chaudhary R, Patra A (2016) Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer. Opt Mater 58:116–120

    Article  CAS  Google Scholar 

  30. Chaudhary N, Chaudhary R, Kesari JP, Patra A, Chand S (2015) Copper thiocyanate (CuSCN): an efficient solution-processable hole transporting layer in organic solar cells. J Mater Chem C 3:11886–11892

    Article  CAS  Google Scholar 

  31. Chaudhary N, Chaudhary R, Kesari JP, Patra A (2017) An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells. Opt Mater 69:367–371

    Article  CAS  Google Scholar 

  32. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci 105:2783–2787

    Article  CAS  Google Scholar 

  33. Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20:2499–2512

    Article  CAS  Google Scholar 

  34. Pan H, Zuo L, Fu W, Fan C, Andreasen B, Jiang X, Norrman K, Krebs FC, Chen H (2013) MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells Org. Electron 14:797–803

    CAS  Google Scholar 

  35. Bhargav R, Chaudhary N, Rathi S, Shahjad D, Bhardwaj S, Gupta AP (2019) Copper bromide as an efficient solution-processable hole transport layer for organic solar cells: effect of solvents. ACS Omega 4:6028–6034

    Article  CAS  Google Scholar 

  36. Bhargav R, Bhardwaj D, Shahjad A, Patra SC (2017) Poly (styrene sulfonate) free poly (3, 4-ethylenedioxythiophene) as a robust and solution-processable hole transport layer for organic solar cells. ChemistrySelect 1:1347–1352

    Article  Google Scholar 

  37. He Z, Zhang Z, Bi S, Chen J, Li D (2020) Conjugated polymer controlled morphology and charge transport of small-molecule organic semiconductors. Sci Rep 10:4344

    Article  Google Scholar 

  38. Bi S, Li Y, He Z, Ouyang Z, Guo Q, Jiang C (2019) Self-assembly diketopyrrolopyrrole-based materials and polymer blend with enhanced crystal alignment and property for organic field-effect transistors. Org Electron 65:96–99

    Article  CAS  Google Scholar 

  39. Chaudhary N, Chaudhary R, Kesari JP, Patra A (2018) Effect of composition ratio of P3HT:PC61BM in organic solar cells: optical and morphological properties. Mater Res Innov 22(5):282–286

    Article  CAS  Google Scholar 

  40. Heeney M, Zhang W, Crouch DJ, Chabinyc ML, Gordeyev S, Hamilton R, Higgins SJ, McCulloch I, Skabara PJ, Sparrowe D, Tierney S (2007) Regioregular poly(3-hexyl)selenophene: a low band gap organic hole transporting polymer. Chem Commun 5061–5063

  41. Bhardwaj D, Shahjad S, Gupta P, Yadav R, Bhargav AP (2017) All conjugated poly(3-hexylthiophene)-block-poly(hexyl-3,4-ethylenedioxythiophene) copolymers. ChemistrySelect 2:9557–9562

    Article  CAS  Google Scholar 

  42. Organic solar cells using solid-state deposition of PEDOT as a HTL with geometry of ITO/PEDOT(HTL)/P3HT:PC BM/Al and a PCE 0.71% has been reported (for details see reference 36)

Download references

Acknowledgements

S. N. acknowledges SERI-DST, New Delhi and P. Y. acknowledges CSIR, New Delhi, for their fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Patra.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1619 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, S., Yadav, P., Pahari, P. et al. Dodecyl-substituted poly(3,4-ethylenedioxyselenophene): polymerization and its solution-processable applications for electrochromic and organic solar cells. J Polym Res 28, 250 (2021). https://doi.org/10.1007/s10965-021-02609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02609-8

Keywords

Navigation