Skip to main content
Log in

Synthesis and characterization of poly(methyl methacrylate-g-α-methyl-β-alanine) copolymer using "Grafting Through" method

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Synthesis of poly(methyl methacrylate-g-α-methyl-β-alanine) [poly(MMA-g-mBA)] copolymer was achieved through base-catalyzed hydrogen transfer polymerization (HTP) and free-radical polymerization (FRP), respectively. For this purpose, poly(α-methyl β-alanine) [PmBA] oligomer with olefinic end-group as a macromonomer was synthesized from methacrylamide by base-catalyzed HTP method. Poly(MMA-g-mBA) in different compositions was obtained through FRP of methyl methacrylate/the PmBA macromonomer mixtures using the "grafting through" method. The characterization of the copolymerization products was accomplished by using multi-instruments such as 1H-NMR, FTIR, TGA, and dynamic light scattering. The spectroscopic and thermal analysis of the graft copolymer reveal that the copolymer was easily built through a combination of HTP and FRP techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Savaş B, Çatıker E, Öztürk T, Meyvacı E (2021) Synthesis and characterization of poly(α-methyl β-alanine)-poly(ε-caprolactone) tri arm star polymer by hydrogen transfer polymerization, ring-opening polymerization and “click” chemistry. J Polym Res 28:30

    Article  Google Scholar 

  2. Breslow DS, Hulse GE, Matlack AS (1957) Synthesis of poly-β-alanine from acrylamide. a novel synthesis of β-alanine. J Am Chem Soc 79:3760–3763

    Article  CAS  Google Scholar 

  3. Otsu T, Yamada B, Itahashi M, Mori T (1976) Hydrogen-transfer polymerization of methyl-substituted acrylamides. J Polym Sci: Polymer Chemistry Edition 14:1347–1361

    CAS  Google Scholar 

  4. Çatıker E, Sancaktar E (2014) Blends of poly (3-hydroxybutyrate) with poly (β-alanine) and its derivatives. J Appl Polym Sci 131:40484

    Article  Google Scholar 

  5. Çatıker E, Öztürk T, Atakay M, Salih B (2019) Synthesis and characterization of novel ABA type poly(ester-ether) triblock copolymers. J Polym Res 26:123

    Article  Google Scholar 

  6. Lee MR, Stahl SS, Gellman SH, Masters KS (2009) Nylon-3 copolymers that generate cell-adhesive surfaces identified by library screening. J Am Chem Soc 131:16779–16789

    Article  CAS  Google Scholar 

  7. Chakraborty S, Liu R, Lemke JJ, Hayouka Z, Welch RA, Weisblum B, Masters KS, Gellman SH (2013) Effects of cyclic vs. acyclic hydrophobic subunits on the chemical structure and biological properties of nylon-3 copolymers. ACS Macro Lett 2:753–756

    Article  CAS  Google Scholar 

  8. Çatıker E, Meyvacı E, Atakay M, Salih B, Öztürk T (2019) Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by “click” chemistry. Polym Bull 76:2113–2128

    Article  Google Scholar 

  9. Liu R, Masters KS, Gellman SH (2012) Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces. Biomacromol 13:1100–1105

    Article  CAS  Google Scholar 

  10. Iwamura T, Ashizawa K, Adachi K, Takasaki M (2019) Anionic hydrogen-transfer polymerization of N-isopropyl acrylamide under microwave irradiation. J Polym Sci, Part A: Polym Chem 57:2415–2419

    Article  CAS  Google Scholar 

  11. Altıntas O, Tunca U (2011) Synthesis of terpolymers by click reactions. Chem Asian J 6:2584–2591

    Article  Google Scholar 

  12. Savaş B, Öztürk T (2020) Synthesis and characterization of poly(vinyl chloride-g-methyl methacrylate) graft copolymer by redox polymerization and Cu catalyzed azide-alkyne cycloaddition reaction. J Macromol Sci Part A Pure Appl Chem 57:819–825

    Article  Google Scholar 

  13. Öztürk T, Savaş B, Meyvacı E, Kılıçlıoğlu A, Hazer B (2020) Synthesis and characterization of the block copolymers using the novel bifunctional initiator by RAFT and FRP technics: evaluation of the primary polymerization parameters. J Polym Res 27:76

    Article  Google Scholar 

  14. Öztürk T, Yörümez C (2020) Synthesis of block copolymer including polyepichlorohydrin and polyethylene glycol by “click” chemistry: evaluation of primary parameters of copolymerization. Polym Bull 77:4773–4788

    Article  Google Scholar 

  15. Öztürk T, Meyvacı E (2017) Synthesis and characterization poly(ϵ-caprolactone-b-ethylene glycol-b-ϵ-caprolactone) ABA type block copolymers via “click” chemistry and ring-opening polymerization. J Macromol Sci Part A Pure Appl Chem 54:575–581

    Article  Google Scholar 

  16. Nuyken O, Weidner R (1986) Graft and block copolymers via polymeric azo initiators. In: Chromatography/Foams/Copolymers. Advances in Polymer Science, vol 73/74. Springer, Berlin, Heidelberg

  17. Brandrup J, Immergut EH (1975) In: Polymer Handbook, 2nd edn. Wiley, New York

    Google Scholar 

  18. Öztürk T, Cavicchi CA (2018) Synthesis and characterization of poly(epichlorohydrin-g-ε-caprolactone) graft copolymers by “click” chemistry. J Polym Mater 35:209–220

    Article  Google Scholar 

  19. Öztürk T, Meyvacı E, Arslan T (2020) Synthesis and characterization of poly(vinyl chloride-g-ε-caprolactone) brush type graft copolymers by ring-opening polymerization and “click” chemistry. J Macromol Sci Part A Pure Appl Chem 57:171–180

    Article  Google Scholar 

  20. Janata M, Masar B, Toman L, Vlcek P, Latalova P, Brus J, Holler P (2003) Synthesis of novel types of graft copolymers by a “grafting-from” method using ring-opening polymerization of lactones and lactides. React Funct Polym 57:137–146

    Article  CAS  Google Scholar 

  21. Xie M, Dang J, Han H, Wang W, Liu J, He X, Zhang Y (2008) Well-Defined Brush Copolymers with High Grafting Density of Amphiphilic Side Chains by Combination of ROP, ROMP, and ATRP. Macromolecules 41:9004–9010

    Article  CAS  Google Scholar 

  22. Öztürk T, Hazer B (2010) Synthesis and characterization of a novel macromonomer initiator for reversible addition fragmentation chain transfer (RAFT). Evaluation of the polymerization kinetics and gelation behaviors. J Macromol Sci Part A Pure Appl Chem 47:265–272

    Article  Google Scholar 

  23. Öztürk T, Kayğın O, Göktaş M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 53:362–367

    Article  Google Scholar 

  24. Gacal B, Durmaz H, Tasdelen MA, Hizal G, Tunca U, Yagci Y, Demirel AL (2006) Anthracene-maleimide-based Diels-Alder “click chemistry” as a novel route to graft copolymers. Macromolecules 39:5330–5336

    Article  CAS  Google Scholar 

  25. Durmaz H, Dag A, Cerit N, Sirkecioglu O, Hizal G, Tunca U (2010) Graft copolymers via romp and diels-alder click reaction strategy. J Polym Sci, Part A: Polym Chem 48:5982–5991

    Article  CAS  Google Scholar 

  26. Çatıker E, Güven O, Salih B (2018) Novel hydrophobic macromonomers for potential amphiphilic block copolymers. Polym Bull 75:47–60

    Article  Google Scholar 

  27. Roos K, Planes M, Hassani C, Mehats J, Vax A, Carlotti S (2016) Solvent-free anionic polymerization of acrylamide: A mechanistic study for the rapid and controlled synthesis of polyamide-3. Macromolecules 49:2039–2045

    Article  CAS  Google Scholar 

  28. Savaş B, Öztürk T, Meyvacı E, Hazer B (2020) Synthesis and characterization of comb-type graft copolymers by redox polymerization and “click” chemistry method. SN Appl Sci 2:181

    Article  Google Scholar 

  29. Çatıker E, Öztürk T, Atakay M, Salih B (2020) Synthesis and characterization of the ABA-type poly(ester-ether-ester) block copolymers. J Macromol Sci Part A Pure Appl Chem 57:600–609

    Article  Google Scholar 

  30. Meyvacı E, Öztürk T, Savaş B (2021) Syntheses and characterizations of poly(ε-caprolactone-block-ethylene glycol methyl ether) block copolymers via ring-opening polymerization and “click” chemistry. J Inst Sci Technol 11:1329–1340. https://doi.org/10.21597/jist.836346

    Article  Google Scholar 

  31. Jamshid MR (2008) Synthesis and thermal properties of novel multiblock biodegradable copolymers derived from polyethylene glycol, ε-caprolactone, and p-dioxanone. ScienceAsia 34:207–213

    Article  Google Scholar 

  32. Thanomsilp C, Phetthianchai U (2012) Synthesis and characterization of PLA-co-PEG copolymers. Adv Mat Res 506:178–181

    CAS  Google Scholar 

  33. Martinez MR, Cong Y, Sheiko SS, Matyjaszewski K (2020) A thermodynamic roadmap for the grafting-through polymerization of PDMS11MA. ACS Macro Lett 9:1303–1309

    Article  CAS  Google Scholar 

  34. Cho HY, Krys P, Szcześniak K, Schroeder H, Park S, Jurga S, Buback M, Matyjaszewski K (2015) Synthesis of poly(OEOMA) using macromonomers via “grafting-through” ATRP. Macromolecules 48:6385–6395

    Article  CAS  Google Scholar 

  35. Kaneyoshi H, Matyjaszewski K (2007) Synthesis of a linear polyethylene macromonomer and preparation of polystyrene-graft-polyethylene copolymers via grafting-through atom transfer radical polymerization. J Appl Polym Sci 105:3–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temel Öztürk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaş, B., Çatıker, E., Öztürk, T. et al. Synthesis and characterization of poly(methyl methacrylate-g-α-methyl-β-alanine) copolymer using "Grafting Through" method. J Polym Res 28, 194 (2021). https://doi.org/10.1007/s10965-021-02551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02551-9

Keywords

Navigation