Skip to main content
Log in

Zinc oxide with various surface characteristics and its role on mechanical properties, cure-characteristics, and morphological analysis of natural rubber/carbon black composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Owing to the ecological concern about the ZnO release and its toxicity towards the marine environment leads to the minimization of ZnO amount in rubber compounding. The present study explores and optimizes the amount of various ZnOs used in rubber compounding. It is carried out by investigating the impact of various ZnOs such as conventional ZnO, active ZnO and nano ZnO on Natural Rubber matrix filled with Carbon Black filler. The whole study is conducted without any processing aid, and ZnOs are characterized by using SEM, TGA and XRD. The prepared composites are evaluated for their rheo-characteristics, physical properties and morphologies. The study concludes that 1.5 phr of nano ZnO and 3 phr of active ZnO offers equivalent performance to 5 phr conventional ZnO in the Natural Rubber matrix giving excellent properties with a reduction of about 70 and 40% usage of ZnO respectively in the formulation of elastomeric product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blow CM, Hepburn C (1981) Rubber technology and manufacture. Butterworth Scientific, London. https://doi.org/10.1016/0032-3861(72)90143-7

    Article  Google Scholar 

  2. Morton M (1999) Rubber Technology. Springer Science, Akron, USA. https://doi.org/10.1021/ed019p420

    Article  Google Scholar 

  3. Coran AY (1964) Vulcanization. Part V. The Formation of Crosslinks in the System: Natural Rubber-Sulfur-MBT-Zinc Ion. Rubber Chem Technol 37:679–88. https://doi.org/10.5254/1.3540360

  4. Coran AY (2003) Chemistry of the vulcanization and protection of elastomers: A review of the achievements. J Appl Polym Sci 87:24–30. https://doi.org/10.1002/app.11659

    Article  CAS  Google Scholar 

  5. Krejsa M, Koeing J (1992) review on sulfur crosslinking fundamentals for accelerated and unaccelerated vulccanization. Rubber Chem Technol 66:376–410

    Article  Google Scholar 

  6. Hassan T, Salam A, Khan A, Khan SU, Khanzada H, Wasim M (2021) Functional nanocomposites and their potential applications: A review. J Polym Res 28. https://doi.org/10.1007/s10965-021-02408-1

  7. Coran AY (1965) Vulcanization. Part VII. Kinetics of sulfur vulcanization of natural rubber in presence of delayed-action accelerators. Rubber Chem Technol 38:1–14. https://doi.org/10.5254/1.3535628

    Article  CAS  Google Scholar 

  8. Chae DW, Kim BC (2005) Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym Adv Technol 16:846–850. https://doi.org/10.1002/pat.673

    Article  CAS  Google Scholar 

  9. Chukwu MN, Ekhator I, Ekebafe LO (2019) Effect of zinc oxide level as activator on the mechanical properties of natural rubber composite. Niger J Technol 38:675–679

    Article  Google Scholar 

  10. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595. https://doi.org/10.1016/j.wasman.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  11. Yangthong H, Pichaiyut S, Wisunthorn S, Kummerlöwe C, Vennemann N, Nakason C (2020) Role of geopolymer as a cure activator in sulfur vulcanization of epoxidized natural rubber. J Appl Polym Sci 137:1–14. https://doi.org/10.1002/app.48624

    Article  CAS  Google Scholar 

  12. Jin X, Götz M, Wille S, Mishra YK, Adelung R, Zollfrank C (2013) A novel concept for self-reporting materials: Stress sensitive photoluminescence in ZnO tetrapod filled elastomers. Adv Mater 25:1342–1347. https://doi.org/10.1002/adma.201203849

    Article  CAS  PubMed  Google Scholar 

  13. Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21:631–651. https://doi.org/10.1016/j.mattod.2017.11.003

    Article  CAS  Google Scholar 

  14. Shree S, Dowds M, Kuntze A, Mishra YK, Staubitz A, Adelung R (2020) Self-reporting mechanochromic coating: A glassfiber reinforced polymer composite that predicts impact induced damage. Mater Horizons 7:598–604. https://doi.org/10.1039/c9mh01400d

    Article  CAS  Google Scholar 

  15. Manikandan B, Endo T, Kaneko S, Murali KR, John R (2018) Properties of sol gel synthesized ZnO nanoparticles. J Mater Sci Mater Electron 29:9474–9485. https://doi.org/10.1007/s10854-018-8981-8

    Article  CAS  Google Scholar 

  16. Sofianos VM, Lee J, Silvester DS, Samanta PK, Paskevicius M, English NJ (2021) Diverse morphologies of zinc oxide nanoparticles and their electrocatalytic performance in hydrogen production. J Energy Chem 56:162–170. https://doi.org/10.1016/j.jechem.2020.07.051

    Article  Google Scholar 

  17. Kumar SS, Venkateswarlu PR, Vanka Ranga Rao GN (2013) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 30:1–6. https://doi.org/10.1557/proc-452-389

    Article  CAS  Google Scholar 

  18. Ghorbani HR, Mehr FP, Pazoki H, Rahmani BM (2015) Synthesis of ZnO nanoparticles by precipitation method. Orient J Chem 31:1219–21. https://doi.org/10.13005/ojc/310281

  19. Saha RK, Debanath MK, Paul B, Medhi S, Saikia E (2020) Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-59534-x

    Article  CAS  Google Scholar 

  20. Ungula J, Dejene BF (2016) Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol-gel method. Phys B Condens Matter 480:26–30. https://doi.org/10.1016/j.physb.2015.10.007

    Article  CAS  Google Scholar 

  21. Wu JJ, Liu SC (2002) Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 14:215–218. https://doi.org/10.1002/1521-4095(20020205)

    Article  CAS  Google Scholar 

  22. Khorsand Zak A, Majid WHA, Wang HZ, Yousefi R, Moradi Golsheikh A, Ren ZF (2013) Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason Sonochem 20:395–400. https://doi.org/10.1016/j.ultsonch.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  23. Wang RC, Tsai CC (2009) Efficient synthesis of ZnO nanoparticles, nanowalls, and nanowires by thermal decomposition of zinc acetate at a low temperature. Appl Phys A Mater Sci Process 94:241–245. https://doi.org/10.1007/s00339-008-4755-0

    Article  CAS  Google Scholar 

  24. Amin G, Asif MH, Zainelabdin A, Zaman S, Nur O, Willander M (2011) Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J Nanomater 2011:1–9. https://doi.org/10.1155/2011/269692

    Article  CAS  Google Scholar 

  25. Vázquez A, López IA, Gómez I (2013) Growth mechanism of one-dimensional zinc sulfide nanostructures through electrophoretic deposition. J Mater Sci 48:2701–2704. https://doi.org/10.1007/s10853-012-7066-y

    Article  CAS  Google Scholar 

  26. Chang SS, Yoon SO, Park HJ, Sakai A (2002) Luminescence properties of Zn nanowires prepared by electrochemical etching. Mater Lett 53:432–436. https://doi.org/10.1016/S0167-577X(01)00521-3

    Article  CAS  Google Scholar 

  27. Yin J, Gao F, Wei C, Lu Q (2014) Water amount dependence on morphologies and properties of ZnO nanostructures in double-solvent system. Sci Rep 4:1–7. https://doi.org/10.1038/srep03736

  28. Archibald SM, Piercey SJ (2015) Current Perspectives on Zinc Deposits. Irish Association for Economic Geology 123–147

  29. Yang M, Xiao W, Yang X, Zhang P (2016) Processing mineralogy study on lead and zinc oxide ore in Sichuan. Metals 6:1–7. https://doi.org/10.3390/met6040093

    Article  Google Scholar 

  30. Castillo LA, Barbosa SE, Capiati NJ (2013) Influence of talc morphology on the mechanical properties of talc filled polypropylene. J Polym Res 20. https://doi.org/10.1007/s10965-013-0152-2

  31. Hitzman MW, Reynolds NA, Sangster DF, Allen CR, Carman CE (2003) Classification, genesis, and exploration guides for nonsulfide zinc deposits 98:685–714

  32. Filimonova LG, Trubkin NV (2008) Micro- and nanoparticles of zincite and native zinc from disseminated mineralization of metasomatic rocks in the Dukat ore field. Geol Ore Depos 50:135–144. https://doi.org/10.1134/S1075701508020049

    Article  Google Scholar 

  33. Sahoo S, Maiti M, Ganguly A, George JJ, Bhowmick AK (2007) Effect of Zinc Oxide Nanoparticles as Cure Activator on the Properties of Natural Rubber and Nitrile Rubber. J Appl Polym Sci 105:2407–2415. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  34. Krishnamoorthy A, Kurian T (2015). Effect of micro and nano zinc oxide on the properties of pre-vulcanized effect of micro and nano zinc oxide on the properties of pre-vulcanized natural rubber latex films. https://doi.org/10.1177/147776061503100301

    Article  Google Scholar 

  35. Manoharan P, Chandra Das N, Naskar K (2017) On-demand tuned hazard free elastomeric composites: A green approach. Biopolymers 107:1–11. https://doi.org/10.1002/bip.23019

    Article  CAS  Google Scholar 

  36. Panampilly B, Thomas S (2013) Nano ZnO as cure activator and reinforcing filler in natural rubber. Polym Eng Sci 1337–46. https://doi.org/10.1002/pen

  37. Wang Y, Zhang P, Zhao Y, Dai R, Huang M, Liu W (2020) Shape memory composites composed of polyurethane/ZnO nanoparticles as potential smart biomaterials. Polym Compos 41:2094–2107. https://doi.org/10.1002/pc.25523

    Article  CAS  Google Scholar 

  38. Heideman G, Datta RN, Noordermeer JWM, Van Baarle B (2005) Influence of zinc oxide during different stages of sulfur vulcanization. elucidated by model compound studies. J Appl Polym Sci 95:1388–1404. https://doi.org/10.1002/app.21364

    Article  CAS  Google Scholar 

  39. Brodska A, Hrdlicka Z, Kuta A (2012) Effect of ZnO with Different Specific surface area on the Cure Characteristics and Mechanical Properties of Carbon Black-filled NR/SBR Compounds During. KGK, Kaut Gummi Kunstst 65:45–48

    CAS  Google Scholar 

  40. Liang Y, Guo N, Li L, Li R, Ji G, Gan S (2015) Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Appl Surf Sci 332:32–39. https://doi.org/10.1016/j.apsusc.2015.01.116

    Article  CAS  Google Scholar 

  41. Thaptong P, Boonbumrung A, Jittham P, Sae-oui P (2019) Potential use of a novel composite zinc oxide as eco-friendly activator in Tire tread compound. J Polym Res 26:229. https://doi.org/10.1007/s10965-019-1895-1

    Article  CAS  Google Scholar 

  42. Hayeemasae N, Rathnayake WGIU, Ismail H (2018) Effect of ZnO nanoparticles on the simultaneous improvement in curing and mechanical properties of NR/ Recycled EPDM blends. Prog Rubber, Plast Recycl Technol 34:1–18. https://doi.org/10.1177/147776061803400101

    Article  Google Scholar 

  43. Roy K, Alam MN, Mandal SK, Debnath SC (2014) Sol-gel derived nano zinc oxide for the reduction of zinc oxide level in natural rubber compounds. J Sol-Gel Sci Technol 70:378–384. https://doi.org/10.1007/s10971-014-3293-9

    Article  CAS  Google Scholar 

  44. Pysklo L, Pawlowski P, Parasiewicz W, Slusarski L (2007) Study on reduction of zinc oxide level in rubber compounds part I. KGK, Kaut Gummi Kunstst 60:548–553

    CAS  Google Scholar 

  45. Heideman G, Noordermeer JWM, Datta RN, Van Baarle B (2006) Various ways to reduce zinc oxide levels in S-SBR rubber compounds. Macromol Symp 245–246:657–667. https://doi.org/10.1002/masy.200651393

    Article  CAS  Google Scholar 

  46. Vatansever N, Polat Ş (2010) Effect of zinc oxide type on ageing properties of Styrene Butadiene Rubber compounds. Mater Des 31:1533–1539. https://doi.org/10.1016/j.matdes.2009.09.015

    Article  CAS  Google Scholar 

  47. Roy K, Alam MN, Mandal SK, Debnath SC (2014) Surface modification of sol–gel derived nano zinc oxide (ZnO) and the study of its effect on the properties of styrene–butadiene rubber (SBR) nanocomposites. J Nanostructure Chem 4:133–142. https://doi.org/10.1007/s40097-014-0127-9

    Article  Google Scholar 

  48. Sahoo S, Bhowmick AK (2007) Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. J Appl Polym Sci 105:2407–2415. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  49. Rooj S, Das A, Heinrich G (2011) Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur Polym J 47:1746–1755. https://doi.org/10.1016/j.eurpolymj.2011.06.007

    Article  CAS  Google Scholar 

  50. Marzocca AJ (2007) Evaluation of the polymer-solvent interaction parameter χ for the system cured styrene butadiene rubber and toluene. Eur Polym J 43:2682–2689. https://doi.org/10.1016/j.eurpolymj.2007.02.034

    Article  CAS  Google Scholar 

  51. Samy MM, Mohamed MG, Kuo SW (2020) Pyrene-functionalized tetraphenylethylene polybenzoxazine for dispersing single-walled carbon nanotubes and energy storage. Compos Sci Technol 199:108360. https://doi.org/10.1016/j.compscitech.2020.108360

    Article  CAS  Google Scholar 

  52. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl Surf Sci 406:339–347. https://doi.org/10.1016/j.apsusc.2017.01.219

    Article  CAS  Google Scholar 

  53. Kanade KG, Kale BB, Aiyer RC, Das BK (2006) Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Mater Res Bull 41:590–600. https://doi.org/10.1016/j.materresbull.2005.09.002

    Article  CAS  Google Scholar 

  54. Zanchet A, Demori R, de Sousa FDB, Ornaghi HL, Schiavo LSA, Scuracchio CH (2019) Sugar cane as an alternative green activator to conventional vulcanization additives in natural rubber compounds: Thermal degradation study. J Clean Prod 207:248–260. https://doi.org/10.1016/j.jclepro.2018.09.203

    Article  CAS  Google Scholar 

  55. Lee YH, Cho M, Do NJ, Lee Y (2018) Effect of ZnO particle sizes on thermal aging behavior of natural rubber vulcanizates. Polym Degrad Stab 148:50–55. https://doi.org/10.1016/j.polymdegradstab.2018.01.004

    Article  CAS  Google Scholar 

  56. Charoenchai M, Tangbunsuk S, Keawwattana W (2020) Silica-graphene oxide nanohybrids as reinforcing filler for natural rubber. J Polym Res 27. https://doi.org/10.1007/s10965-020-02209-y

  57. Song SH (2020) Graphene-silica hybrids fillers for multifunctional solution styrene butadiene rubber. J Polym Res 27. https://doi.org/10.1007/s10965-020-02140-2

  58. Lin Y, Chen Y, Zeng Z, Zhu J, Wei Y, Li F (2015) Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos Part A Appl Sci Manuf 70:35–44. https://doi.org/10.1016/j.compositesa.2014.12.008

    Article  CAS  Google Scholar 

  59. Mohamed MG, Kuo SW (2019) Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol Chem Phys 220:1–13. https://doi.org/10.1002/macp.201800306

    Article  CAS  Google Scholar 

  60. Khanra S, Ganguly D, Ghorai SK, Goswami D, Chattopadhyay S (2020) The synergistic effect of fluorosilicone and silica towards the compatibilization of silicone rubber and fluoroelastomer based high performance blend. J Polym Res 27. https://doi.org/10.1007/s10965-020-02062-z

  61. Chatterjee T, Syed Ismail SMR, Padmanabhan R, Naskar K (2017) Radiation crosslinked Polyolefinic blends: exploring thermally tuned dual Shape Memory character. Polym Adv Technol 28:686–698. https://doi.org/10.1002/pat.3968

    Article  CAS  Google Scholar 

  62. Shanmugharaj AM, Ray S, Bandyopadhyay S, Bhowmick AK (2003) Surface morphology of styrene-butadiene rubber vulcanizate filled with novel electron beam modified dual phase filler by atomic force microscopy. J Adhes Sci Technol 17:1167–1186. https://doi.org/10.1163/156856103322114525

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are grateful for IIT Kharagpur for providing financial support for the research work. We also like to thank the research co-workers, Anagha M.G, Aswathy T.R, Sanjay Pal, Asit Baran Bhattacharya, Midhun Das and Jeevanandham N for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinsuk Naskar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1669 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T.K, S., Naskar, K. Zinc oxide with various surface characteristics and its role on mechanical properties, cure-characteristics, and morphological analysis of natural rubber/carbon black composites. J Polym Res 28, 183 (2021). https://doi.org/10.1007/s10965-021-02536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02536-8

Keywords

Navigation