Skip to main content
Log in

Kinetic and thermal study of ethylene-propylene copolymerization catalyzed by ansa-zirconocene activated with Alkylaluminium/borate: Effects of linear and branched alkylaluminium compounds as cocatalyst

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ethylene-propylene (EP) copolymerizations was carried out with two ansa-metallocene: rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 (Mt-I) and rac-Et(Ind)2ZrCl2 (Mt-II) combined with borates activators like ([Me2NPh][B(C6F5)4] (Borate-I), [Ph3C][B(C6F5)4] (Borate-II). Different structures of alkylaluminum( triethylaluminium (TEA), triisobutylaluminium (TIBA) and TEA/TIBA mixture of 25/75, 50/50, 75/25 mol ratios were used as cocatalysts. The choice of ligand structure and, more importantly, the nature of the cocatalyst significantly impact these systems' activity and the polymeric materials' properties. Borate-II has been shown as giving higher activities than Borate-I with both ansa-metallocene, attending 5.6 × 106 g/mol Zr*h. Mt-I gives higher activities and molecular weight but produced copolymers with low ethylene content, melting points, and crystallinity than Mt-II. The activities were very close to each other with 100% TIBA. Still, Mt-I became more active than Mt-II when TEA was more than 25% in the cocatalyst system. The effects of alkylaluminiums catalysts cocatalyst on EP copolymer molecular weight (Mw) and molecular weight distribution (MWD) were much more complicated. The MWD curve changed from broad to narrow with Mt-I when TIBA was replaced by a different mole ratio of TEA/TIBA ratio. The technique used for the assessment of active centers [C*]/[Zr] fraction in the ansa-metallocene catalyst was quenched label by using 2-thiophenecarbonyl chloride (TPCC) to determine the effects of alkylaluminiums catalysts structure on the propagation rate constants (kP) of EP copolymers. The [C*]/[Zr] value of Mt-I/Borate-I/TIBA is lower than those of the Mt-I/Borate-I/TEA and Mt-I/Borate-I/TEA/TIBA system. The main differences appear between catalysts containing pure TIBA and those containing TEA, possibly due to the faster rate of chain transfer with Al—Et than with bulky Al—iBu. Adding TEA in metallocene/borate/alkylaluminiums catalysts catalysts can be applied as an effective method to regulate the molecular weight of EP copolymer with a high degree of activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. McKnight AL, Waymouth RM (1998) Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem Rev 98(7):2587–2598

    Article  CAS  PubMed  Google Scholar 

  2. Khan A, Guo Y, Zhang Z, Ali A, Fu Z, Fan Z (2018) Kinetics of short-duration ethylene–propylene copolymerization with MgCl2-supported Ziegler-Natta catalyst: Differentiation of active centers on the external and internal surfaces of the catalyst particles. J Appl Polym Sci 135(12):46030

    Article  Google Scholar 

  3. Zaman U, Naz R, Khattak NS, ur Rehman K, Saeed A, Farooq M, et al (2021) Kinetic and thermodynamic studies of novel acid phosphates extracted from Cichorium intybus seedlings. Int J Biol Macromol 168:195–204

  4. Ali A, Tufail MK, Jamil MI, Yaseen W, Iqbal N, Hussain M et al (2021) Comparative Analysis of Ethylene/Diene Copolymerization and Ethylene/Propylene/Diene Terpolymerization Using Ansa-Zirconocene Catalyst with Alkylaluminum/Borate Activator: The Effect of Conjugated and Nonconjugated Dienes on Catalytic Behavior and Polymer Microstructure. Molecules 26(7):2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Osakada K. (2014) Organometallic Reactions and Polymerization. Springer

  6. Keii T, Soga K. (1986) Catalytic polymerization of olefins. Elsevier

  7. Chien JC, Rieger B, Sugimoto R, Mallin DT, Rausch MD (1990) 38. Homogeneous Ziegler–Natta Catalysts and Synthesis of Anisotactic and Thermoplastic Elastomeric Poly (propylenes) Dedicated to Professor T. Keii on the Occasion of his seventieth birthday. Studies in Surface Science and Catalysis. Elsevier p. 535–74

  8. Tsutsui T, Kioka M, Toyota A, Kashiwa N (1990) 34. Isotactic Polypropylene with a Soluble Metallocene Based Catalyst System–Characterization of Blown Film–. Studies in Surface Science and Catalysis. Elsevier p. 493–9

  9. Janiak C, Rieger B (1994) Silica gel supported zirconocene dichloride/methylalumoxane catalysts for ethylene polymerization: Effects of heterogenation on activity, polymer microstructure and product morphology. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 215(1):47–57

    Article  CAS  Google Scholar 

  10. Rieger B, Janiak C (1994) Concentration effects of methylalumoxane, zirconocene dichloride and trimethylaluminum in ethylene polymerization. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 215(1):35–46

    Article  CAS  Google Scholar 

  11. Bergstra MF, Weickert G (2006) Semi-batch reactor for kinetic measurements of catalyzed olefin co-polymerizations in gas and slurry phase. Chem Eng Sci 61(15):4909–4918

    Article  CAS  Google Scholar 

  12. Chen EYX, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure− activity relationships. Chem Rev 100(4):1391–434

  13. de Souza CG, de Souza RF, Bernardo-Gusmao K (2007) Effect of alkylaluminum cocatalyst on ethylene polymerization with nickel-α-diimine complex. Appl Catal A 325(1):87–90

    Article  Google Scholar 

  14. Li T, Kong FW, Liu R, Li ZY, Zhu FM (2011) Effect of cocatalysts on ethylene polymerization with fluorinated bisphenoxyimine titanium as a catalyst. J Appl Polym Sci 119(1):572–576

    Article  CAS  Google Scholar 

  15. Nooijen G (1994) On the importance of diffusion of cocatalyst molecules through heterogeneous ziegler/natta catalysts. Eur Polymer J 30(1):11–15

    Article  CAS  Google Scholar 

  16. Estrada JV, Hamielec A (1994) Modelling of ethylene polymerization with Cp2ZrCl2MAO catalyst. Polymer 35(4):808–818

    Article  CAS  Google Scholar 

  17. Huang J, Rempel GL (1997) Kinetic study of propylene polymerization using Et (H4Ind) 2ZrCl2/methylalumoxane catalysts. Ind Eng Chem Res 36(4):1151–1157

    Article  CAS  Google Scholar 

  18. Nejabat GR, Nekoomanesh M, Arabi H, Salehi-Mobarakeh H, Zohuri GH, Omidvar M et al (2013) Synthesis and microstructural study of stereoblock elastomeric polypropylenes from metallocene catalyst (2-PhInd) 2ZrCl2 activated with cocatalyst mixtures. J Polym Sci, Part A: Polym Chem 51(3):724–731

    Article  CAS  Google Scholar 

  19. Wang B (2006) Ansa-metallocene polymerization catalysts: Effects of the bridges on the catalytic activities. Coord Chem Rev 250(1–2):242–258

    Article  CAS  Google Scholar 

  20. Nifant’ev IE, Vinogradov AA, Vinogradov AA, Ivchenko PV (2016) Zirconocene-catalyzed dimerization of 1-hexene: Two-stage activation and structure–catalytic performance relationship. Catal Commun 79:6–10

    Article  CAS  Google Scholar 

  21. Franceschini FC, Tavares TTdR, Greco PP, Galland GB, dos Santos JH, Soares JB (2005) Effects of the type and concentration of alkylaluminum cocatalysts on the molar mass of polypropylene made with in situ supported metallocene catalysts. J Appl Polym sci 95(5):1050–5.

  22. Guo Y, Fu Z, Fan Z. Counting of Active Centers in Ethylene and Propylene Polymerization with Homogeneous Metallocene Catalysts: Influence of Time in the Initial Stage.

  23. Ali A, Muhammad N, Hussain S, Jamil MI, Uddin A, Aziz T et al (2021) Kinetic and Thermal Study of Ethylene and Propylene Homo Polymerization Catalyzed by ansa-Zirconocene Activated with Alkylaluminum/Borate: Effects of Alkylaluminum on Polymerization Kinetics and Polymer Structure. Polymers 13(2):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia L, Yang X, Ishihara A, Marks TJ (1995) Protected (fluoroaryl) borates as effective counteranions for cationic metallocene polymerization catalysts. Organometallics 14(7):3135–3137

    Article  CAS  Google Scholar 

  25. Ali A, Akram MA, Guo Y, Wu H, Liu W, Khan A et al (2020) Ethylene–propylene copolymerization and their terpolymerization with dienes using ansa-Zirconocene catalysts activated by borate/alkylaluminum. J Macromol Sci, Part A 57(2):156–164

    Article  CAS  Google Scholar 

  26. Ali A, Liu X, Guo Y, Akram MA, Wu H, Liu W, et al (2020) Kinetics and mechanism of ethylene and propylene polymerizations catalyzed with ansa-zirconocene activated by borate/TIBA. J Organomet Chem 121366

  27. Akram MA, Liu X, Jiang B, Zhang B, Ali A, Fu Z, et al (2021) Effect of alkylaluminum cocatalyst on ethylene/1-hexene copolymerization and active center distribution of MgCl2-supported Ziegler-Natta catalyst. J Macromol Sci 1–11. https://doi.org/10.1080/10601325.2021.1892495

  28. Khattak NS, Ahmad AS, Shah LA, Ara L, Farooq M, Sohail M et al (2019) Thermal and Rheological Study of Nanocomposites, Reinforced with Bi-Phase Ceramic Nanoparticles. Z Phys Chem 233(9):1233–1246

    Article  CAS  Google Scholar 

  29. Seraidaris T, Kaminsky W, Seppälä JV, Löfgren B (2005) Propene-Ethene Copolymers Synthesised with Cs-Symmetric Metallocenes and Different Cocatalysts. Macromol Chem Phys 206(13):1319–1325

    Article  CAS  Google Scholar 

  30. Kaminsky W, Laban A (2001) Metallocene catalysis. Appl Catal A 222(1–2):47–61

    Article  CAS  Google Scholar 

  31. Khattak NS, Shah LA, Sohail M, Ahmad S, Farooq M, Ara L et al (2019) The Role of Non-Ionic Surfactants in Solubilization and Delivery of Sparingly Soluble Drug Naproxen Sodium (NS): A Case Study. Z Phys Chem 233(7):933–947

    Article  CAS  Google Scholar 

  32. Khattak NS, Khan MS, Shah LA, Farooq M, Khan A, Ahmad S et al (2020) The Effect of Low Weight Percent Multiwalled Carbon Nanotubes on the Dielectric Properties of Non-Conducting Polymer/Ceramic Nanocomposites for Energy Storage Materials. Z Phys Chem 234(1):11–26

    Article  CAS  Google Scholar 

  33. Rehman TU, Shah LA, Khan M, Irfan M, Khattak NS (2019) Zwitterionic superabsorbent polymer hydrogels for efficient and selective removal of organic dyes. RSC Adv 9(32):18565–18577

    Article  CAS  Google Scholar 

  34. Guo Y, Zhang Z, Guo W, Khan A, Fu Z, Xu J et al (2017) Kinetics and mechanism of metallocene-catalyzed olefin polymerization: Comparison of ethylene, propylene homopolymerizations, and their copolymerization. J Polym Sci, Part A: Polym Chem 55(5):867–875

    Article  CAS  Google Scholar 

  35. Laine A, Coussens BB, Hirvi JT, Berthoud A, Friederichs N, Severn JR et al (2015) Effect of ligand structure on olefin polymerization by a metallocene/borate catalyst: a computational study. Organometallics 34(11):2415–2421

    Article  CAS  Google Scholar 

  36. Laine A, Linnolahti M, Pakkanen TA (2012) Alkylation and activation of metallocene polymerization catalysts by reactions with trimethylaluminum: A computational study. J Organomet Chem 716:79–85

    Article  CAS  Google Scholar 

  37. Bochmann M (2004) Kinetic and mechanistic aspects of metallocene polymerisation catalysts. J Organomet Chem 689(24):3982–3998

    Article  CAS  Google Scholar 

  38. Bochmann M (1996) Cationic Group 4 metallocene complexes and their role in polymerisation catalysis: the chemistry of well defined Ziegler catalysts. J Chem Soc, Dalton Trans 3:255–270

    Article  Google Scholar 

  39. Lu L, Niu H, Dong JY, Zhao X, Hu X (2010) Ethylene/propylene copolymerization over three conventional C2-symmetric metallocene catalysts: Correlation between catalyst configuration and copolymer microstructure. J Appl Polym Sci 118(6):3218–3226

    Article  CAS  Google Scholar 

  40. Zhang HX, Lee YJ, Park JR, Lee DH, Yoon KB (2011) Control of molecular weight distribution for polypropylene obtained by a commercial Ziegler-Natta catalyst: effect of a cocatalyst and hydrogen. J Appl Polym Sci 120(1):101–108

    Article  CAS  Google Scholar 

  41. Guo Y, Yang P, Zhang S, Jiang B, Khan A, Zhu L et al (2018) Study on 2-thiophenecarbonyl chloride-quenched olefin polymerization with α-diimine nickel catalysts. Iran Polym J 27(3):153–159

    Article  CAS  Google Scholar 

  42. Song F, Cannon RD, Lancaster SJ, Bochmann M (2004) Activator effects in metallocene-based alkene polymerisations: unexpectedly strong dependence of catalyst activity on trityl concentration. J Mol Catal A: Chem 218(1):21–28

    Article  CAS  Google Scholar 

  43. Bochmann M, Sarsfield MJ (1998) Reaction of AlR3 with [CPh3][B (C6F5) 4]: facile degradation of [B (C6F5) 4]-by Transient “[AlR2]+.” Organometallics 17(26):5908–5912

    Article  CAS  Google Scholar 

  44. Singh G, Kothari AV, Gupta VK (2009) Triad sequence determination of ethylene–propylene copolymers–application of quantitative 13C NMR. Polym Testing 28(5):475–479

    Article  CAS  Google Scholar 

  45. Stephens C, Poon B, Ansems P, Chum S, Hiltner A, Baer E (2006) Comparison of propylene/ethylene copolymers prepared with different catalysts. J Appl Polym Sci 100(2):1651–1658

    Article  CAS  Google Scholar 

  46. Zhang HX, Lee YJ, Park JR, Lee Dh, Yoon KB (2011) Control of molecular weight distribution for polypropylene obtained by commercial Ziegler–Natta catalyst: effect of temperature. Polym Bull 67(8):1519–27

  47. Zhang B, Dong Q, Fu Z, Fan Z (2014) Improving microisotacticity of Ziegler-Natta catalyzed polypropylene by using triethylaluminum/triisobutylaluminum mixtures as cocatalyst. Polymer 55(19):4865–4872

    Article  CAS  Google Scholar 

  48. Desert X, Carpentier J-F, Kirillov E (2019) Quantification of active sites in single-site group 4 metal olefin polymerization catalysis. Coord Chem Rev 386:50–68

    Article  CAS  Google Scholar 

  49. Desert X, Proutiere F, Welle A, Den Dauw K, Vantomme Al, Miserque O, et al (2019) Zirconocene-Catalyzed Polymerization of α-Olefins: When Intrinsic Higher Activity Is Flawed by Rapid Deactivation. Organometallics 38(13):2664–73

  50. Zaccaria F, Cipullo R, Correa A, Budzelaar PH, Busico V, Ehm C (2019) Separating Electronic from Steric Effects in Ethene/α-Olefin Copolymerization: A Case Study on Octahedral [ONNO] Zr-Catalysts. Processes 7(6):384

    Article  CAS  Google Scholar 

  51. Nelsen DL, Anding BJ, Sawicki JL, Christianson MD, Arriola DJ, Landis CR (2016) Chromophore quench-labeling: An approach to quantifying catalyst speciation as demonstrated for (EBI) ZrMe2/B (C6F5) 3-catalyzed polymerization of 1-hexene. ACS Catal 6(11):7398–7408

    Article  CAS  Google Scholar 

  52. Sillars DR, Landis CR (2003) Catalytic propene polymerization: Determination of propagation, termination, and epimerization kinetics by direct NMR observation of the (EBI) Zr (MeB (C6F5) 3) Propenyl catalyst species. J Am Chem Soc 125(33):9894–9895

    Article  CAS  PubMed  Google Scholar 

  53. Lin S, Tagge CD, Waymouth RM, Nele M, Collins S, Pinto J (2000) Kinetics of propylene polymerization using bis (2-phenylindenyl) zirconium dichloride/methylaluminoxane. J Am Chem Soc 122(46):11275–11285

    Article  CAS  Google Scholar 

  54. Kissin YV, Mink RI, Nowlin TE, Brandolini AJ (1999) Kinetics and mechanism of ethylene homopolymerization and copolymerization reactions with heterogeneous Ti-based Ziegler-Natta catalysts. Top Catal 7(1–4):69–88

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support from the National Science Foundation China (51803081), The Research School of polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang, 202113, PR China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Fan or Li Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Jamil, M.I., Uddin, A. et al. Kinetic and thermal study of ethylene-propylene copolymerization catalyzed by ansa-zirconocene activated with Alkylaluminium/borate: Effects of linear and branched alkylaluminium compounds as cocatalyst. J Polym Res 28, 186 (2021). https://doi.org/10.1007/s10965-021-02525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02525-x

Keywords

Navigation