Skip to main content
Log in

Development of a semi-crystalline hybrid polyurethane nanocomposites for hMSCs cell culture and evaluation of body- temperature shape memory performance and isothermal crystallization kinetics

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We report synthesis and characterization of a group of reactive in-situ polyurethane (PU) nanocomposites based on PCL1000-PEG2000-PCL1000 block copolymer- diol and MWCNT/Graphene nanoparticles. The experiments were designed to tune shape fixity (SF) and shape recovery (SR) of the specimens. Hydroxyl-functionalized MWCNTs’ content was set constant at 0.25 wt% (T0.25) and Graphene’s content was varied in the range of 0 to 0.75 wt% (G (0–0.75)) to control the crystallization of the soft segment blocks and elastic modulus of the PU nanocomposites. The pure and T0.25G0.50 showed the highest shape fixity (SF = 100%). The optimum sample was PU nanocomposite of T0.25G0.50 with an SR of 95%. The results of Dynamic Mechanical Thermal Analysis (DMTA) indicated lack of flowage for the nanocomposites and their thermoset nature. The non-isothermal crystallization analysis indicated a sharp decline in crystallization temperature (Tc) of the soft segments of T0.25G0 sample and adding graphene nanoplatelets improved the crystallization extent and increased Tc. The isothermal crystallization kinetics of the PUs indicated an increase in crystallization kinetics by increasing graphene’s content compared to T0.25G0 sample. The results of Human Mesenchymal Stem cells (hMSCs) culture indicated an increase in cell adhesion and proliferation as a function of Graphene’s content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Najafabadi SAA, Keshvari H, Sarkhosh H, Ashuri M, Tahriri M (2014) “Surface Modification of Castor Oil-Based Polyurethane by Polyacrylic Acid Graft using a Two-Step Plasma Treatment for Biomedical Applications,” Adv Polym Technol 33(3). https://doi.org/10.1002/adv.21411

  2. McKiernan RL, Heintz AM, Hsu SL, Atkins EDT, Penelle J, Gido SP (2002) Influence of Hydrogen Bonding on the Crystallization Behavior of Semicrystalline Polyurethanes. Macromolecules 35(18):6970–6974. https://doi.org/10.1021/ma0201274

    Article  CAS  Google Scholar 

  3. Hood MA, Wang B, Sands JM, La JJ, Beyer FL, Li CY (2010) “Morphology control of segmented polyurethanes by crystallization of hard and soft segments,” vol. 51. https://doi.org/10.1016/j.polymer.2010

  4. Sonnenschein MF, Lysenko Z, Brune DA, Wendt BL, Schrock AK (2005) Enhancing polyurethane properties via soft segment crystallization. Polymer (Guildf) 46(23):10158–10166. https://doi.org/10.1016/j.polymer.2005.08.006

    Article  CAS  Google Scholar 

  5. Yang Y, Qiu Z (2011) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: effects of comonomer composition and crystallization temperature. Cryst Eng Comm 13(7):2408–2417. https://doi.org/10.1039/C0CE00598C

    Article  CAS  Google Scholar 

  6. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13(7):54–61. https://doi.org/10.1016/S1369-7021(10)70128-0

    Article  CAS  Google Scholar 

  7. Huang WM et al (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19(9):9952. https://doi.org/10.1007/s10965-012-9952-z

    Article  CAS  Google Scholar 

  8. Lu H, Wang X, Yu K, Huang WM, Yao Y, Leng J (2017) A phenomenological formulation for the shape/temperature memory effect in amorphous polymers with multi-stress components. Smart Mater Struct 26(9):95011. https://doi.org/10.1088/1361-665x/aa77b3

    Article  CAS  Google Scholar 

  9. Salvekar AV et al (2017) Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel. Acc Chem Res 50(2):141–150. https://doi.org/10.1021/acs.accounts.6b00539

    Article  CAS  PubMed  Google Scholar 

  10. Ge Q, Yu K, Ding Y, Qi HJ (2012) “Prediction of temperature-dependent free recovery behaviors of amorphous shape memory polymers,” Soft Matter 8(43):11098–11105. https://doi.org/10.1039/C2SM26249E

  11. Wu XL, Huang WM, Lu HB, Wang CC, Cui HP (2017) Characterization of polymeric shape memory materials. J Polym Eng 37(1):1–20. https://doi.org/10.1515/polyeng-2015-0370

    Article  CAS  Google Scholar 

  12. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer (Guildf) 50(8):1852–1856. https://doi.org/10.1016/j.polymer.2009.02.035

    Article  CAS  Google Scholar 

  13. Müller AJ, Arnal ML, Trujillo M, Lorenzo AT (2011) Super-nucleation in nanocomposites and confinement effects on the crystallizable components within block copolymers, miktoarm star copolymers and nanocomposites. Eur Polym J 47(4):614–629. https://doi.org/10.1016/j.eurpolymj.2010.09.027

    Article  CAS  Google Scholar 

  14. Laird ED, Li CY (2013) Structure and Morphology Control in Crystalline Polymer-Carbon Nanotube Nanocomposites. Macromolecules 46(8):2877–2891. https://doi.org/10.1021/ma400035j

    Article  CAS  Google Scholar 

  15. Chung T, Romo-Uribe A, Mather PT (2008) Two-Way Reversible Shape Memory in a Semicrystalline Network. Macromolecules 41(1):184–192. https://doi.org/10.1021/ma071517z

    Article  CAS  Google Scholar 

  16. Afshari E, Rostami M, Farahmand F (2017) Review on different experimental techniques developed for recording force-deformation behaviour of soft tissues; with a view to surgery simulation applications. J Med Eng Technol 41(4):257–274. https://doi.org/10.1080/03091902.2016.1264492

    Article  PubMed  Google Scholar 

  17. Zhao, H., & Bai, J. (2015). Highly sensitive piezo-resistive graphite nanoplatelet–carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction. ACS applied materials & interfaces, 7(18), 9652-9659.

  18. Roy S, Srivastava SK, Pionteck J, Mittal V (2015) Mechanically and Thermally Enhanced Multiwalled Carbon Nanotube-Graphene Hybrid filled Thermoplastic Polyurethane Nanocomposites. Macromol Mater Eng 300(3):346–357. https://doi.org/10.1002/mame.201400291

    Article  CAS  Google Scholar 

  19. Jafari S, Nourany M, Zakizadeh M, Taghilou A, Ranjbar HA, Noormohammadi F (2020) The effect of controlled phase separation of PEG/PCL-2000 homopolymer polyols using their PCL500-PEG1000-PCL500 tri-block copolymer and CNCs in the final polyurethane hydrogels on their shape memory behavior. Compos Commun 19:194–202. https://doi.org/10.1016/j.coco.2020.03.016

    Article  Google Scholar 

  20. Noormohammadi F, Nourany M, Mir Mohamad Sadeghi G, Wang PY, Shahsavarani H (2021) “The role of cellulose nanowhiskers in controlling phase segregation, crystallization and thermal stimuli responsiveness in PCL-PEGx-PCL block copolymer-based PU for human tissue engineering applications,” Carbohydr Polym  252:117219. https://doi.org/10.1016/j.carbpol.2020.117219

  21. Nourany M, Ghelichkhani S, Sarkhosh H, Zakizadeh M, Behrouz T (2021) The effect of PCL/PEG ABA block lengths on the crystallization of homo/block- based polyurethane/CNW nanocomposites. J Polym Res 28(1):14. https://doi.org/10.1007/s10965-020-02376-y

    Article  CAS  Google Scholar 

  22. Ranjbar HA, Nourany M, Mollavali M, Noormohammadi F, Jafari S (2021) Stimuli-responsive polyurethane bionanocomposites of poly(ethylene glycol)/poly(ε-caprolactone) and [poly(ε-caprolactone)-grafted-] cellulose nanocrystals. Polym Adv Technol 32(1):76–86. https://doi.org/10.1002/pat.5062

    Article  CAS  Google Scholar 

  23. Prud’homme RE (2016) “Crystallization and morphology of ultrathin films of homopolymers and polymer blends,” Prog Polym Sci 54–55:214–231. https://doi.org/10.1016/j.progpolymsci.2015.11.001

  24. Lu C, Guo S, Zhang Y, Yin M (2006) Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers. Polym Int 55(6):694–700. https://doi.org/10.1002/pi.2034

    Article  CAS  Google Scholar 

  25. Fairclough JPA et al (2001) Crystallization in block copolymer melts: Small soft structures that template larger hard structures. J Chem Phys 114(12):5425–5431. https://doi.org/10.1063/1.1344605

    Article  CAS  Google Scholar 

  26. Lu H, Min Huang W (2013) “Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite,” Appl Phys Lett 102(23):231910. https://doi.org/10.1063/1.4811134

  27. He C et al (2004) Study of the Synthesis, Crystallization, and Morphology of Poly(ethylene glycol)−Poly(ε-caprolactone) Diblock Copolymers. Biomacromol 5(5):2042–2047. https://doi.org/10.1021/bm049720e

    Article  CAS  Google Scholar 

  28. Lu H, Huang WM (2013) On the origin of the Vogel–Fulcher–Tammann law in the thermo-responsive shape memory effect of amorphous polymers. Smart Mater Struct 22(10):105021. https://doi.org/10.1088/0964-1726/22/10/105021

    Article  CAS  Google Scholar 

  29. Zhou J et al (2014) Shapeshifting: Reversible Shape Memory in Semicrystalline Elastomers. Macromolecules 47(5):1768–1776. https://doi.org/10.1021/ma4023185

    Article  CAS  Google Scholar 

  30. Kolesov I, Dolynchuk O, Radusch H (2015) “Shape-memory behavior of cross-linked semi-crystalline polymers and their blends,” 9(3):255-276. https://doi.org/10.3144/expresspolymlett.2015.24

  31. Jafari S, Nourany M, Zakizadeh M, Taghilou A, Ranjbar HA, Noormohammadi F (2020) The effect of controlled phase separation of PEG / PCL-2000 homopolymer polyols using their PCL 500 -PEG 1000 -PCL 500 tri-block copolymer and CNCs in the final polyurethane hydrogels on their shape memory behavior. Compos Commun 19(March):194–202. https://doi.org/10.1016/j.coco.2020.03.016

    Article  Google Scholar 

  32. Lu H, Liang F, Gou J (2011) Nanopaper enabled shape-memory nanocomposite with vertically aligned nickel nanostrand: controlled synthesis and electrical actuation. Soft Matter 7(16):7416–7423. https://doi.org/10.1039/C1SM05765K

    Article  CAS  Google Scholar 

  33. Fang Y, Ni Y, Leo S-Y, Taylor C, Basile V, Jiang P (2015) Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat Commun 6(1):7416. https://doi.org/10.1038/ncomms8416

    Article  CAS  PubMed  Google Scholar 

  34. Fan J, Li G (2018) High enthalpy storage thermoset network with giant stress and energy output in rubbery state. Nat Commun 9(1):642. https://doi.org/10.1038/s41467-018-03094-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Rodgers WR, Xie T (2011) “Semi-crystalline two-way shape memory elastomer,”  52:5320–5325. https://doi.org/10.1016/j.polymer.2011.09.030

  36. Zakizadeh HSM, Nourany M, Javadzadeh M, Wang PY (2021) “Analysis of crystallization kinetics and shape memory performance of PEG-PCL/MWCNT based PU nanocomposite for tissue engineering applications,” 15(5):418–432.

  37. Siqueira G, Fraschini C, Bras J, Dufresne AR, Laborie MP (2011) “Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(-caprolactone),” Eur Polym J 47(12):2216–2227. https://doi.org/10.1016/j.eurpolymj.2011.09.014

  38. Tong Z, Zhou J, Wang R-Y, Xu J-T (2017) Interplay of microphase separation, crystallization and liquid crystalline ordering in crystalline/liquid crystalline block copolymers. Polymer (Guildf) 130:1–9. https://doi.org/10.1016/j.polymer.2017.09.071

    Article  CAS  Google Scholar 

  39. Chen Y, Cui H, Li L, Tian Z, Tang Z (2014) Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers. Polym Chem 5(15):4441–4445. https://doi.org/10.1039/C4PY00498A

    Article  Google Scholar 

  40. Liu W et al (2014) Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surfaces B Biointerfaces 113:101–106. https://doi.org/10.1016/j.colsurfb.2013.08.031

    Article  CAS  PubMed  Google Scholar 

  41. Rosales-Leal JI et al (2010) Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surfaces A Physicochem Eng Asp 365(1):222–229. https://doi.org/10.1016/j.colsurfa.2009.12.017

    Article  CAS  Google Scholar 

  42. Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–3082. https://doi.org/10.1016/j.biomaterials.2007.03.013

    Article  CAS  PubMed  Google Scholar 

  43. Brown XQ, Ookawa K, Wong JY (2005) Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26(16):3123–3129. https://doi.org/10.1016/j.biomaterials.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  44. Kong HJ, Liu J, Riddle K, Matsumoto T, Leach K, Mooney DJ (2005) Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat Mater 4(6):460–464. https://doi.org/10.1038/nmat1392

    Article  CAS  PubMed  Google Scholar 

  45. Zhou J et al (2018) The effects of surface topography of nanostructure arrays on cell adhesion. Phys Chem Chem Phys 20(35):22946–22951. https://doi.org/10.1039/C8CP03538E

    Article  CAS  PubMed  Google Scholar 

  46. Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH (2015) “A guide to mechanobiology: Where biology and physics meet,” Biochim Biophys Acta-Mol Cell Res 1853(11, Part B):3043–3052. https://doi.org/10.1016/j.bbamcr.2015.05.007

  47. Gilbert PM, Weaver VM (2017) Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease. Semin Cell Dev Biol 67:141–152. https://doi.org/10.1016/j.semcdb.2016.09.004

    Article  PubMed  Google Scholar 

  48. Discher DE, Mooney DJ, Zandstra PW (2009) “Growth Factors, Matrices, and Forces Combine and Control Stem Cells,” Science (80-.) 324(5935):1673–1677. https://doi.org/10.1126/science.1171643

  49. Haase K et al (2016) Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner. Sci Rep 6(1):21300. https://doi.org/10.1038/srep21300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275. https://doi.org/10.1038/nrm1890

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen EH, Zanotelli MR, Schwartz MP, Murphy WL (2014) Differential effects of cell adhesion, modulus and VEGFR-2 inhibition on capillary network formation in synthetic hydrogel arrays. Biomaterials 35(7):2149–2161. https://doi.org/10.1016/j.biomaterials.2013.11.054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Amirkabir University of technology and authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nourany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 243 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkhosh, H., Nourany, M., Noormohammadi, F. et al. Development of a semi-crystalline hybrid polyurethane nanocomposites for hMSCs cell culture and evaluation of body- temperature shape memory performance and isothermal crystallization kinetics. J Polym Res 28, 161 (2021). https://doi.org/10.1007/s10965-021-02522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02522-0

Keywords

Navigation