Skip to main content

A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nanoclay on mild steel in chloride environment

Abstract

The halloysite nanoclay was chemically modified with different silanes such as 3-glycidoxypropyl trimethoxysilane (GPTMS) and 3-aminopropyl trimethoxysilane (APTMS) and examined by FTIR, TGA, and XRD techniques. The incorporation of functionalized nanoclay in the epoxy resin enhances the protectant properties of the coated steel. The anticorrosion properties were investigated by electrochemical measurements in chloride environment. The mild steel coated by epoxy-APTMS/clay nanocomposite displayed higher coating resistance (Rc = 5407.88 kΩ cm2) in comparision with pure epoxy coating (Rc = 549.51 kΩ cm2).The mechanical properties (hardness, adhesion strength and tensile strength) of the resultant nanocomposite were also evaluated. The introduction APTMS/clay (4 wt%) to the epoxy coating helps to increase the tensile strength to 80 MPa which is 25% higher than pure epoxy coating. The surface topographies of the studied coatings were investigated by SEM/EDX analysis. The results from electrochemical and mechanical investigations indicated that the as synthesized coatings consisting of epoxy-silanes/clay possessed an excellent adhesion, microhardness and corrosion protection properties.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Ye Y, Chen H, Wu J, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polym J 48:6426–6433

    CAS  Article  Google Scholar 

  2. 2.

    Lecouvet B, Gutierrez JG, Sclavons M, Bailly C (2011) Structure property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab 96:226–235

    CAS  Article  Google Scholar 

  3. 3.

    Vahedi V, Pasbakhsh P, Pooria Pasbakhsh, Churchman GJ (2014) Polymer nanocomposites reinforced by halloysite nanotubes: a review in natural mineral nanotubes: Properties and applications. Apple aca pres Ontario,Canada 110–150.

  4. 4.

    Ismail H, Pasbakhsh P, Fauzi M, Abubakar A (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27:841–850

    CAS  Article  Google Scholar 

  5. 5.

    Lam CK, Lau KT (2006) Localized elastic modulus distribution of nanoclay/epoxy composites by using nano indentation. Compos Struct 75:553–558

    Article  Google Scholar 

  6. 6.

    Shi G, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2003) Friction and wear of low nanometer Si3N4 filled epoxy composites. J Frict Wear 254:784–796

    CAS  Article  Google Scholar 

  7. 7.

    Hartwig A, Sebald M, Putz D, Aberle L (2005) Preparation, characterisation and properties of nanocomposites based on epoxy resins - An overview. Macromol Symp 221:127–135

    CAS  Article  Google Scholar 

  8. 8.

    Xavier JR (2018) Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater. Ant Corros Met Mater 65(1):38–45

    Article  Google Scholar 

  9. 9.

    Yang Y, Chen Y, Leng F, Huang Li, Wang Z, Tian W (2017) Recent advances on surface modification of Halloysite nanotubes for multifunctional applications. Appl Sci 7:1215

    Article  Google Scholar 

  10. 10.

    Berahman R, Raiati M, Mehrabi Mazidi M, Paran SMR (2016) Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: Effect of matrix hardness and HNT content. Mater Des 104:333–345

    CAS  Article  Google Scholar 

  11. 11.

    Hernández-Guerrero O, Campillo-Illanes BF, Domínguez-Patiño ML, Benavente R, Martínez H, Sedano A (2020) Villanueva H (2020) Comparative studies of the mechanical and thermal properties of clay / copolymer nanocomposites synthesized by two in-situ methods and solution blending method. J Polym Res 27:106. https://doi.org/10.1007/s10965-019-1966-3

    CAS  Article  Google Scholar 

  12. 12.

    Hassan T, Salam A, Khan A, Khan SU, Khanzada H, Wasim M, Khan MQ, Kim IS (2021) Functional nanocomposites and their potential applications: A review. J Polym Res 28:36. https://doi.org/10.1007/s10965-021-02408-1

    CAS  Article  Google Scholar 

  13. 13.

    Mirzaee M, Rashidi A, Zolriasatein A, Abadchi MR (2021) Corrosion properties of organic polymer coating reinforced two-dimensional nitride nanostructures: a comprehensive review. J Polym Res 28:62. https://doi.org/10.1007/s10965-021-02434-z

    CAS  Article  Google Scholar 

  14. 14.

    Yeh JM, Chen CL, Chen YC, Lee KR, Wei Y, Li S (2002) Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(oethoxyaniline)–clay nanocomposite materials. Poly J 43:2729–2736

    CAS  Article  Google Scholar 

  15. 15.

    Raja Beryl J, Xavier JR (2020) Mechanical and corrosion protection properties of polymer–clay nanocomposite coatings for mild steel in marine environment. Emerg Mat 3:75–85

    Article  Google Scholar 

  16. 16.

    Baochun GUO, Quanliang ZOU, Yanda LEI, Demin JIA (2009) Structure and performance of Polyamide 6/Halloysite nanotubes. Polym J 41:835–842

    Article  Google Scholar 

  17. 17.

    Krishnaiah P, Ratnam CT, Manickam S (2017) Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci 135:583–595

    CAS  Article  Google Scholar 

  18. 18.

    Yang K, Chi Q, Wang X, Jiang Y, Li F, Xue B (2019) The role of halloy site on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene-oxide)/halloysite nanocomposites. J Polym Res 26:138. https://doi.org/10.1007/s10965-019-1803-8

    CAS  Article  Google Scholar 

  19. 19.

    Azizli MJ, Khonakdar HA, Mokhtary M, Vahabodin GV (2019) Investigating the effect of organoclay montmorillonite and rubber ratio composition on the enhancement compatibility and properties of carboxylated acrylonitrile-butadiene rubber/ethylene-propylene-diene monomer hybrid elastomer nanocomposites. J Polym Res 26:221. https://doi.org/10.1007/s10965-019-1885-3

    CAS  Article  Google Scholar 

  20. 20.

    Xavier JR Superior corrosion protection performance of polypdopamine-intercalated CeO2/polyurethane nanocomposite coatings on steel in 3.5% NaCl solution. J Appl Electrochem (2021). https://doi.org/10.1007/s10800-021-01547-z

    Article  Google Scholar 

  21. 21.

    Mohamadian N, Ghorbani H, Wood DA, Khoshmardan MA (2019) A hybrid nanocomposite of poly(styrene-methyl methacrylate- acrylic acid) /clay as a novel rheology-improvement additive for drilling fluids. J Polym Res 26:33. https://doi.org/10.1007/s10965-019-1696-6

    CAS  Article  Google Scholar 

  22. 22.

    Raja Beryl J, Xavier JR (2020) Electrochemical and mechanical studies of epoxy coatings containing eco-friendly nanocomposite consisting of silane functionalized clay–epoxy on mild steel. J Bio Trib Corros 6:126

    Article  Google Scholar 

  23. 23.

    Xavier JR (2020) Improvement of mechanical and anticorrosion coating properties in conducting polymer poly (Propyl Methacrylate) embedded with silane functionalized silica nanoparticles. SILICON. https://doi.org/10.1007/s12633-020-00679-9

    Article  Google Scholar 

  24. 24.

    Sujani BY, Abeywardena SP, Nalin de Silva KM, Tissera NP (2017) A facile method to modify bentonite nanoclay with silane. Int Nano Lett 7:237–241

    Article  Google Scholar 

  25. 25.

    Vinodhini SP, Xavier JR (2021) Evaluation of corrosion protection performance and mechanical properties of epoxy-triazole/graphene oxide nanocomposite coatings on mild steel. J Mater Sci 56:7094–7110. https://doi.org/10.1007/s10853-020-05636-w

    CAS  Article  Google Scholar 

  26. 26.

    Xavier JR, Beryl JR, Vinodhini SP, Janaki GB (2021) Enhanced Protective and Mechanical Properties of Polypyrrole Coatings Modified by Silane/CoO Nanocomposite on AZ91 Mg Alloy in Chloride Media. J Bio Tribo Corros 7:46. https://doi.org/10.1007/s40735-021-00479-7

    Article  Google Scholar 

  27. 27.

    Liu MY, Zhu HG, Siddiqui NA, Leung CKY, Kim JK (2011) Glass fibers with clay nanocomposite coating: Improved barrier resistance in alkaline environment. Compos A Appl Sci Manuf 42(12):2051–2059

    Article  Google Scholar 

  28. 28.

    Xavier JR (2020) Evaluation of Anticorrosion Properties of Epoxy-Silane Hybrid Nanocomposite Coating on AA6082 Aluminum Alloy. Surf Engin Appl Electrochem 56:762–772. https://doi.org/10.3103/S1068375520060150

    Article  Google Scholar 

  29. 29.

    Boomadevi Janaki G, Xavier JR (2021) Evaluation of bi-functionalized alumina-epoxy nanocomposite coatings for improved barrier and mechanical properties. Surf Coat Technol 405:126549. https://doi.org/10.1016/j.surfcoat.2020.126549

    CAS  Article  Google Scholar 

  30. 30.

    Joseph Raj Xavier (2021) Electrochemical and dynamic mechanical studies of newly synthesized polyurethane/SiO2-Al2O3 mixed oxide nanocomposite coated steel immersed in 3.5% NaCl solution, Surfaces and Interfaces, 22: 2021, 100848. https://doi.org/10.1016/j.surfin.2020.100848

  31. 31.

    Mishra K, Singh RP (2019) Effect of APTMS modification on multiwall carbon nanotube reinforced epoxy nanocomposites. Compos B Eng 162:425–432

    CAS  Article  Google Scholar 

  32. 32.

    Pasbakhsh P, Jock Churchman G, Keeling JL (2013) Characterisation and properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Poly Sci 74:47–57

    CAS  Google Scholar 

  33. 33.

    Xavier JR (2020) Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel. Mater Sci Eng B 260:114639

    Article  Google Scholar 

  34. 34.

    Carli LN, Daitx TS, Soares GV, Crespo JS, Mauler RS (2014) The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Appl Poly Sci 87:311–319

    CAS  Google Scholar 

  35. 35.

    Xavier JR (2020) High protection performance of vanadium pentoxide-embedded polyfuran/epoxy coatings on mild steel. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03400-3

Download references

Acknowledgements

The authors thank the Vice Chancellor Prof. S. Salivahanan and the Management of Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai-600 062, Tamil Nadu, India, for their constant encouragement and constructive suggestions regarding this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beryl, J.R., Xavier, J.R. A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nanoclay on mild steel in chloride environment. J Polym Res 28, 189 (2021). https://doi.org/10.1007/s10965-021-02512-2

Download citation

Keywords

  • Steel
  • Corrosion
  • Coatings
  • Epoxy-clay nanocomposites
  • GPTMS
  • APTMS
  • SECM