Skip to main content
Log in

Effect of different surface properties of nanosilica on retrogradation behavior and structures of thermoplastic cassava starch

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermoplastic cassava starch (TPS) /nanosilica (nano-SiO2) composites were prepared by adding different surface properties of nanosilica. The effect of different surface properties of nano-SiO2 on the retrogradation kinetics, morphology, spherulites size, molecular interactions, short-range molecular structure and crystal type of TPS was investigated by differential scanning calorimetry (DSC), polarized light microscopy (PLM), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and 13C NMR. The results indicated that the retrogradation degree and rate of TPS containing hydrophobic nano-SiO2 were higher than that of hydrophilic nano-SiO2, and the spherulites were clearer. Hydrophobic nano-SiO2 could uniformly disperse in starch matrix. V-type crystal formed after adding hydrophilic nano-SiO2, and A + V types after adding hydrophobic nano-SiO2. The crystallinity of TPS adding hydrophobic nano-SiO2 was higher than that of hydrophilic nano-SiO2, but the crystal size and interplanar spacing were smaller. Hydrophobic nano-SiO2 could promote the formations of double helix structure and the ordered molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hsieh C, Liu W, Whaley J, Shi Y (2019) Structure, properties, and potential applications of waxy tapioca starches – A review. Trends Food Sci Technol 83:225–234

    Article  CAS  Google Scholar 

  2. Chen Q, Shi Y, Chen G, Cai M (2020) Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent. Int J Biol Macromol 142:846–854

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34(12):1348–1368

    Article  CAS  Google Scholar 

  4. Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43(2):490–500

    Article  CAS  Google Scholar 

  5. Zhou SX, Wu LM, Sun J, Shen WD (2003) Effect of nanosilica on the properties of polyester-based polyurethane. J Appl Polym Sci 88(1):189–193

    Article  CAS  Google Scholar 

  6. Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohyd Polym 72(3):521–526

    Article  CAS  Google Scholar 

  7. Wang Z, Gu Z, Hong Y, Cheng L, Li Z (2011) Bonding strength and water resistance of starch-based wood adhesive improved by silica nanoparticles. Carbohyd Polym 86(1):72–76

    Article  CAS  Google Scholar 

  8. Frost K, Barthes J, Kaminski D, Lascaris E, Niere J, Shanks R (2011) Thermoplastic starch–silica–polyvinyl alcohol composites by reactive extrusion. Carbohyd Polym 84(1):343–350

    Article  CAS  Google Scholar 

  9. Tang M, Hong Y, Gu Z, Zhang Y, Cai X (2013) The effect of xanthan on short and long-term retrogradation of rice starch. Starch - Stärke 65(7–8):702–708

    Article  CAS  Google Scholar 

  10. Sikora M, Krystyjan M, Dobosz A, Tomasik P, Walkowiak K, Masewicz Ł, Kowalczewski PŁ, Baranowska HM (2019) Molecular analysis of retrogradation of corn starches. Polymers 11(11):1764

    Article  CAS  PubMed Central  Google Scholar 

  11. Li W, Li C, Gu Z, Qiu Y, Cheng L, Hong Y, Li Z (2016) Relationship between structure and retrogradation properties of corn starch treated with 1,4-α-glucan branching enzyme. Food Hydrocoll 52:868–875

    Article  Google Scholar 

  12. Fredrisson H, Silverio J, Andersson R (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohyd Polym 35:119–134

    Article  Google Scholar 

  13. Bertoft E, Annor GA, Shen X, Rumpagaporn P, Seetharaman K, Hamaker BR (2016) Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohyd Polym 140:113–121

    Article  CAS  Google Scholar 

  14. Zheng M, Su H, You Q, Zeng S, Zheng B, Zhang Y, Zeng H (2019) An insight into the retrogradation behaviors and molecular structures of lotus seed starch-hydrocolloid blends. Food Chem 295:548–555

    Article  CAS  PubMed  Google Scholar 

  15. Liu R, Xu C, Cong X, Wu T, Song Y, Zhang M (2017) Effects of oligomeric procyanidins on the retrogradation properties of maize starch with different amylose/amylopectin ratios. Food Chem 221:2010–2017

    Article  CAS  PubMed  Google Scholar 

  16. Fu Z, BeMiller JN (2017) Effect of hydrocolloids and salts on retrogradation of native and modified maize starch. Food Hydrocolloids 69:36–48

    Article  CAS  Google Scholar 

  17. Wang L, Xu J, Fan X, Wang Q, Wang P, Yuan J, Yu Y, Zhang Y, Cui L (2018) The effect of branched limit dextrin on corn and waxy corn gelatinization and retrogradation. Int J Biol Macromol 106:116–122

    Article  CAS  PubMed  Google Scholar 

  18. Ji N, Liu C, Zhang S, Yu J, Xiong L, Sun Q (2017) Effects of chitin nano-whiskers on the gelatinization and retrogradation of maize and potato starches. Food Chem 214 (Supplement C):543–549

  19. Liu L, Yang M, Xu J, Fan X, Gao W, Wang Q, Wang P, Xu B, Yuan J, Yu Y (2020) Exploring the mechanism of pullulan delay potato starch long-term retrogradation from the viewpoint of amylopectin chain motion. Int J Biol Macromol 145:84–91

    Article  CAS  PubMed  Google Scholar 

  20. Chaudhary DS (2008) Understanding amylose crystallinity in starch–clay nanocomposites. J Polym Sci Part B: Polym Phys 46(10):979–987

    Article  CAS  Google Scholar 

  21. Muller CMO, Laurindo JB, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crops Prod 33(3):605–610

    Article  CAS  Google Scholar 

  22. Liu Y, Fan L, Mo X, Yang F, Pang J (2018) Effects of nanosilica on retrogradation properties and structures of thermoplastic cassava starch. J Appl Polym Sci 135(2):45687

    Article  Google Scholar 

  23. Liu S, Li X, Chen L, Li L, Li B, Zhu J, Liang X (2017) Investigating the H2O/O2 selective permeability from a view of multi-scale structure of starch/SiO2 nanocomposites. Carbohyd Polym 173:143–149

    Article  CAS  Google Scholar 

  24. Liu S, Li X, Chen L, Li L, Li B, Zhu J (2017) Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films. Int J Biol Macromol 104:1330–1337

    Article  CAS  PubMed  Google Scholar 

  25. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A (2002) Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35(6):2042–2049

    Article  CAS  Google Scholar 

  26. Hakim RH, Cailloux J, Santana OO, Bou J, Sánchez-Soto M, Odent J, Raquez JM, Dubois P, Carrasco F, Maspoch ML (2017) PLA/SiO2 composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. J Appl Polym Sci 134(40):45367

    Article  Google Scholar 

  27. Strawhecker KE, Manias E (2003) Crystallization Behavior of Poly(ethylene oxide) in the Presence of Na+ Montmorillonite Fillers. Chem Mater 15(4):844–849

    Article  CAS  Google Scholar 

  28. Liu S, Li X, Chen L, Li L, Li B, Zhu J (2018) Tunable d-limonene permeability in starch-based nanocomposite films reinforced by cellulose nanocrystals. J Agric Food Chem 66(4):979–987

    Article  CAS  PubMed  Google Scholar 

  29. Imberty A, Chanzy H, Perez S, Buleon A, Tran V (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol 201(2):365–378

    Article  CAS  PubMed  Google Scholar 

  30. Jiping P, Shujun W, Jinglin Y, Hongyan L, Jiugao Y, Wenyuan G (2007) Comparative studies on morphological and crystalline properties of B-type and C-type starches by acid hydrolysis. Food Chem 105(3):989–995

    Article  Google Scholar 

  31. Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohyd Polym 115:364–372

    Article  CAS  Google Scholar 

  32. van Soest JJG, Hulleman SHD, de Wit D, Vliegenthart JFG (1996) Crystallinity in starch bioplastics. Ind Crops Prod 5(1):11–22

    Article  Google Scholar 

  33. Zhang QX, Yu ZZ, Xie XL, Naito K, Kagawa Y (2007) Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer 48(24):7193–7200

    Article  CAS  Google Scholar 

  34. Seligra PG, Medina Jaramillo C, Famá L, Goyanes S (2016) Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohyd Polym 138:66–74

    Article  CAS  Google Scholar 

  35. Wang N, Zhang X, Han N, Bai S (2009) Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohyd Polym 76(1):68–73

    Article  CAS  Google Scholar 

  36. Baik MY, Dickinson LC, Chinachoti P (2003) Solid-State 13C CP/MAS NMR studies on aging of starch in white bread. J Agric Food Chem 51(5):1242–1248

    Article  CAS  PubMed  Google Scholar 

  37. Garbow JR, Schaefer J (1991) Magic-angle carbon-13 NMR study of wheat flours and doughs. J Agric Food Chem 39(5):877–880

    Article  CAS  Google Scholar 

  38. Magalhaes NF, Andrade CT (2009) Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties. Carbohyd Polym 75(4):712–718

    Article  CAS  Google Scholar 

  39. Singh V, Ali SZ, Divakar S (1993) 13C CP/MAS NMR spectroscopy of native and acid modified starches. Starch-Starke 45(2):59–62

    Article  Google Scholar 

  40. Zhang B, Chen L, Li X, Li L, Zhang H (2015) Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids 50(50):228–236

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Natural Science Foundation of China (Grant No. 51663002) and the Guangxi Natural Science Foundation of China (Grant No. 2017GXNSFAA198083 and 2020GXNSFAA159113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Xin Liu.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YX., Liang, ZS., Liang, JN. et al. Effect of different surface properties of nanosilica on retrogradation behavior and structures of thermoplastic cassava starch. J Polym Res 28, 147 (2021). https://doi.org/10.1007/s10965-021-02507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02507-z

Keywords

Navigation