Skip to main content
Log in

Sulfonated poly (Ester-Urethane) / ionic liquids systems: synthesis, characterization and properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new class of materials based on crosslinked poly (ester-urethane) containing low proportions of ionic liquid were synthesized using biobased sulfonated oligoester diol, trimethylol propane (TMP), 4,4′-methylene bis(cyclohexyleisocyanate) (HMDI) and 1-butyle-3-methylimidazolium acetate (BMIMAc). Sulfonated oligoester with a well-controlled molar mass was first obtained by melt polycondensation catalyzed by Ti(OBu)4. The resulting products were characterized by, 1HNMR, DSC and MALDI-TOF MS techniques. The systems of crosslinked poly (ester-urethane) and ionic liquid were obtained via a one-shot process. FTIR technical was used for a more effective control of crosslinking reaction. The Thermomechanical analysis of the resulting materials were performed by DSC and DMA technique. Furthermore, the hydrolytic and oxidative degradation study revealed that the degradation of systems mainly depends on the content in ionic liquid and the crosslinking degree of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The figures used to support the findings of this study are included within the article.

References

  1. Yeganeh H, Hojati-Talemi P (2007) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol). Polym Deg and Stab 92:480–489. https://doi.org/10.1016/j.polymdegradstab.2006.10.011

    Article  CAS  Google Scholar 

  2. Zlatanic A, Petrovic ZS, Dusˇek K (2002) Structure and Properties of Triolein-Based PolyurethaneNetworks. Biomacromolecules 3:1048–1056. https://doi.org/10.1021/bm020046f

  3. Gorna K, Gogolewski S (2002) Biodegradable polyurethanes for implants. II. In vitrodegradation and calcification of materials from poly(ϵ-caprolactone)–poly(ethylene oxide) diols and various chain extenders. J Biomed Mate 60:592–606. https://doi.org/10.1002/jbm.10100

  4. Ilavsk M, Ulmer HW, teNijenhuis TK, Mijs WJ (1994) Effect of Charge Concentration on Dynamic Mechanical, Extraction and Swelling Beha-dour of Polyurethane Networks Based on Triisocyanate and Diethanolamine Derivatives.Polymer gels and Networks 2:73-87. https://doi.org/10.1016/0966-7822(94)90026-4

  5. Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Soybean oil-based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility. J Lipid Sci Technol Eur. https://doi.org/10.1002/ejlt.201200050

    Book  Google Scholar 

  6. Ilavsk M, Dusek K (1983) The structure and elasticity of polyurethane networks: 1. Model networks of poly(oxypropylene) triols and diisocyanate. Polymer 24:981–990. https://doi.org/10.1016/0032-3861(83)90148-9

    Article  Google Scholar 

  7. Gorna K, Gogolewski S, Preparation, (2003) degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res 67:813–827. https://doi.org/10.1002/jbm.a.10148

    Article  CAS  Google Scholar 

  8. Guelcher SA, Patel V, Gallagher KM, Connolly S, Didier JE, Doctor JS, Hollinger JO (2006) Synthesis and In Vitro Biocompatibility of Injectable Polyurethane Foam Scaffolds. Tissue Eng 12:1247–1259. https://doi.org/10.1089/ten.2006.12.1247

    Article  CAS  PubMed  Google Scholar 

  9. Guelcher SA, Srinivasan A, Hafeman AE, Gallagher KM, Doctor JS, Khetan S et al (2007) Synthesis, in vitro degradation, and mechanical properties of two-component poly(ester urethane) urea scaffolds: effects of water and polyol composition. Tissue Eng 13:2321–2333. https://doi.org/10.1089/ten.2006.0395

  10. Navarro-Baena I, Arrieta MP, Sonseca A, Torre L, López D, Giménez E, Kenny JM, Peponi L (2015) Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: Plastificant and reinforcement effects. Polym Degrad Stab 121:171–179. https://doi.org/10.1016/j.polymdegradstab.2015.09.002

  11. Feng Y, Li C (2006) Study on oxidative degradation behaviors of poly(ester-urethane) networks. Polym Degrad Stab 91:1711–1716. https://doi.org/10.1016/j.polymdegradstab.2005.12.002

  12. Opera S (2012) Degradation of crosslinked poly(ester-urethanes) Elastomers in Distilled Water: Influence of Hard segment. J Appl Polym Sci 124:1059–1066. https://doi.org/10.1002/app.35196

  13. Storey RF, Wiggins JS, Puckett AD (1994) Hydrolyzable Poly (ester-urethane) Networks from L-Lysine Diisocyanate and D. L-Lactide/e-Caprolactone Homo- and Copolyester Triols, J Polym Sci Part A 31:2345–2363. https://doi.org/10.1002/pola.1994.080321216

    Article  Google Scholar 

  14. Bruin P, Smedinga J, Pennings AJ (1990) Biodegradablley sine djisocyanate-based poly(glycolide-co-&-caprolactone)- urethane network in artificial skin. Biomaterials 11:291–295. https://doi.org/10.1016/0142-9612(90)90013-G

  15. Bruin P, Veenstra GJ, Nijenhuis AJ, Pennings AJ (1988) Design and synthesis of biodegradable poly(ester-urethane) elastomer networks composed of non-toxic building blocks. Makromol Chem 9:589–594. https://doi.org/10.1002/marc.1988.030090814

  16. Storey RF, Wiggins JS, Mauritz KA, Puckett AD (1993) Bioadsorbable composites II: nontoxic, L-lysine-based poly(ester-urethane) matrix composites. Polym Compos 14:17–25. https://doi.org/10.1002/pc.750140104

  17. Guelcher SA, Srinivasan A, Dumas JE, Didier JE, McBride S, Hollinger JO (2008) Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials 29:1762–1775. https://doi.org/10.1016/j.biomaterials.2007.12.046

  18. Neffe AT, Tronci G, Alteheld A, Lendlein A (2010) Controlled Change of Mechanical Properties during Hydrolytic Degradation of Polyester Urethane Networks. Macromol Phys And Chem 211:182–194. https://doi.org/10.1002/macp.200900441

    Article  CAS  Google Scholar 

  19. Zhang Mi, Wang SW, Moore RB, Colby RH, Long TE (2013) Polyurethanes Containing an ImidazoliumDiol‐Based Ionic‐Liquid Chain Extender for Incorporation of Ionic-Liquid Electrolytes. Macromol Chem Phys 214:1027–1036. https://doi.org/10.1002/macp.201200688

  20. Lavall RL, Ferrari S, Tomasi C, Marzantowicz M, Quartaronea E, Magistris A, Mustarelli P, Lazzaroni S, Fagnoni M (2010)Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system. J Power Sources 195:5761–5767. https://doi.org/10.1016/j.jpowsour.2010.03.085

  21. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ, Am J (2003) Impact of ionic liquid physical properties on lipase activity and stability. Chem Soc 125:4125–4131. https://doi.org/10.1021/ja028557x

  22. Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal Properties of Imidazolium Ionic Liquids. Thermochimica Acta 357:97–102. https://doi.org/10.1016/S0040-6031(00)00373-7

  23. Hapiot P, Lagrost C (2008) Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chem Rev 108:2238–2264. https://doi.org/10.1021/cr0680686

  24. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4:73–80. https://doi.org/10.1039/B110838G

  25. Berns B, Deligo¨z HS, Tieke B, Kremer F (2008) Conductive Composites of Polyurethane Resins and Ionic Liquids. Macromol Mat And Eng 293:409–418. https://doi.org/10.1002/mame.200700405

  26. Morozova SM, Shaplov AS, Lozinskaya EI, Mecerreyes D, Sardon H, Zulfiqar S, Suarez-Garc ́ía F, Vygodskii YS (2017) Ionic Polyurethanes as a New Family of Poly(ionic liquid)s for Efficient CO2 Capture. Macromolecules 50:2814–2824. https://doi.org/10.1021/acs.macromol.6b02812

  27. Yagci MB, Bolca S, Heuts JPA, Ming W, de With G (2011) Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds. Prog Org Coat 72:343– 347. https://doi.org/10.1016/j.porgcoat.2011.05.006

  28. Behera PK, Mondal P, Singha NK (2018) Polyurethane by Ionic Liquid Crosslink. A New Class of Super Shape-Memory Like Polymer, Polymer chemistry 9:4205–4217. https://doi.org/10.1039/C8PY00549D

    Article  CAS  Google Scholar 

  29. Bougarech A, Abid M, Gouanvé F, Espuche E, Abid S, Gharbi REL, Fleury E (2013) Synthesis, Characterization and Water Sorption Study of New Biobased (Furanic-Sulfonated) Copolyesters. Polymer 54:5482–5489. https://doi.org/10.1016/j.polymer.2013.07.072

  30. Bougarech A, Abid M, DaCruz-Boisson F, Abid S, El Gharbi R, Fleury E (2014)Modulation of furanic-sulfonatedisophthalic copolyesters properties through diols units control. Eur Polym J 58:207–217. https://doi.org/10.1016/j.eurpolymj.2014.06.018

  31. Abid M, Mhiri S, Triki R, Bougarech A, Abid S (2020) Preparation, characterization and degradation study of novel sulfonatedfuranic poly(ester- amide)s. Des Monomers Polym 23:16–24.https://doi.org/10.1080/15685551.2020.1727171

  32. Bougarech A, Abid S, Abid M (2020) Poly (ethylene 2,5-furandicarboxylate) ionomers with enhanced liquid water sorption and oxidative degradation. J Polym Res 27:217. https://doi.org/10.1007/s10965-020-02194-2

  33. Triki R, Bougarech A, Tessier M, Abid S, Fradet A, Abid M (2018) Furanic–Aliphatic Polyesteramides by Bulk Polycondensation Between Furan-Based Diamine, Aliphatic Diester and Diol. J Polym Environ 26:1272–1278. https://doi.org/10.1007/s10924-017-1037-

    Article  CAS  Google Scholar 

  34. HadjKacem Y, Bougarech A, Abid S, Abid M, Fleury E (2019) Fullybiobased aliphatic anionic oligoesters: synthesis and properties. Int J Polym Sci. https://doi.org/10.1155/2019/3186202

  35. Pattanayak A, Jana SC (2005) Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer 46:5183–5193. https://doi.org/10.1016/j.polymer.2005.04.035

  36. Irusta L, Fernandez-Berridi MJ (2000) Aromatic poly (ester–urethanes): effect of the polyol molecular weight on the photochemical behaviour. Polymer 41:3297–3302. https://doi.org/10.1016/S0032-3861(99)00548-0

    Article  CAS  Google Scholar 

  37. Hiltz JA, Szabo JP (2001) Ft-irstudy of poly (ether) urethanes. Technical Report DREA-TM-2001–073, Recherche et développement pour la défense Canada 01- 06

  38. Coates J (2006) Interpretation of Infrared Spectra, a Practical Approach, Encyclopedia of analytical chemistry 10815– 10837. https://doi.org/10.1002/9780470027318.a5606

  39. Wilhelm C, Gardette JL (1997) Infrared analysis of the photochemical behaviour of segmented polyurethanes: 1. aliphatic poly (ester-urethane). Polymer 38:4019–4031. https://doi.org/10.1016/S0032-3861(96)00984-6

  40. Maziz A (2014) Microactionneurs à base de polymères conducteurs électroniques : Vers l’intégration aux microsystèmes par de nouveaux procédés d’élaboration. Thèse de doctorat, Laboratoire de physico-chimie des polymères et des interfaces (LPPI)

    Google Scholar 

  41. Pascault J-P, Sautereau H, Verdu J, Williams RJJ (2002) Thermosetting Polymers. Marcel Dekker, New York

    Book  Google Scholar 

  42. El Mahdi A, M’Sahel M, Medimagh R (2017) Catalyst-Free Ring Opening Synthesis of Biodegradable Poly (ester-urethane)s Using Isosorbide Bio-Based Initiator. Macromol Chem Phys 218:1700077. https://doi.org/10.1002/macp.201700077

    Article  CAS  Google Scholar 

  43. Liu J, Cao D, Zhang L. (2009) Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study. J Chem Phys 131:03490. https://doi.org/10.1063/1.3179691

  44. Scott MP, Benton MG, Rahman M, Brazel CS (2003) Ionic Liquids as Green Solvents: Progress and Prospects. ACS Symp Ser 856:468

    Article  CAS  Google Scholar 

  45. Scott MP, Brazel CS, Benton MG, Mays JW, Holbrey JD, Rogers RD (2002) Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem Commun 13:1370–1371. https://doi.org/10.1039/b204316p

  46. Okuzaki H, Takagi S, Hishiki F, Tanigawa R (2014) Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators. Sensors Actuators B Chem 194:59– 63. https://doi.org/10.1016/j.snb.2013.12.059

  47. Bendaoud A, Chalameta Y (2014) Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing. Carbohydr Polym 108:75–82. https://doi.org/10.1016/j.carbpol.2014.03.023

  48. Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodriguez JV, Quintana P, Batolo-Perez P (2010) Degradation Studies on Segmented Polyurethane Prepared with HMDI, PCL and Different Chain Extenders. Acta Biomater 6:2035–2044. https://doi.org/10.1016/j.actbio.2009.12.010

  49. Lyu S, Schley J, Loy B, Luo L, Hobot C, Sparer R, Untereker D, Krzeszak J (2002) In vitro Biostability Evaluation of Polyurethane Composites in Acidic, Basic, Oxidative, and Neutral Solutions. J Biomed Mater Res B Appl Biomater 58:509 518. https://doi.org/10.1002/jbm.b.30973

  50. Schubert MA, Wiggins MJ, Anderson JM, Hiltner A. (1997) Role of oxygen in biodegradation of poly(etherurethane urea) elastomers. J Biomed Mater 34:519–530. https://doi.org/10.1002/(SICI)1097-4636(19970315)34:4519::AID-JBM123.0.CO;2-7

Download references

Acknowledgments

The authors gratefully acknowledge financial support of the Ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Abid.

Ethics declarations

Conflicts of Interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10965_2021_2491_MOESM1_ESM.docx

Supplementary file1 Supplementary Materials.This is the 1H NMR spectrum of Na-DMSS (SI.1), the table of each MALDI-TOF MS peaks (SI.2), DSC and TGA curves of PBSu70Ss30and PEUR/IL 0–7 (SI.3) and (SI.4).(Supplementary Materials). (DOCX 394 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

kacem, Y.H., Bougarech, A., Quintard, G. et al. Sulfonated poly (Ester-Urethane) / ionic liquids systems: synthesis, characterization and properties. J Polym Res 28, 125 (2021). https://doi.org/10.1007/s10965-021-02491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02491-4

Keyword

Navigation