Influence of natural crosslinker and fibre weightage on waste kibisu fibre reinforced wheatgluten biocomposite

Abstract

In this era of green and sustainable manufacturing, natural fibre-reinforced polymer composites (NFPC) have been widely accepted as the potential alternatives for polymer matrix composites (PMC) or any other non-biodegradable composites. Despite the increasing need to replace plastic bottles, bags, disposable plastic plates and trays, seedling pots used in our day to day life, not many studies have been made in this direction. The current work aims at developing a hundred percent biodegradable composite by reinforcing waste Kibisu silk fibre into wheat gluten as a possible replacement of plastic disposables. The developed composites are made up of different mass fractions of Kibisu silk fibre reinforced into plasticised wheat gluten. The prepared composites have been characterised to obtain the best combination. The developed composites were found to have adequate tensile property, mass degradation at a considerably high temperature and most importantly, the outstanding rate of biodegradation under normal atmospheric conditions. The soil quality test before and after degradation also showed no significant changes in the quality of the soil. FTIR studies revealed improved interaction between wheat gluten, glycerol and Kibisu fibres upon addition of natural lemon extract as crosslinker. Overall results indicate that the developed biocomposites have the potential to substitute harmful plastic disposables like plastic seedling pots and plates, disposable hospital tray, dustbin, etc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The authors confirm that the data and material supporting the findings of this study are available within the article. Raw data are available from the corresponding author upon reasonable request.

Code availability

The authors confirm that the computer code is not used for this study.

Abbreviations

WG:

Wheat gluten

F:

Kibisu silk fibre

(FPC):

fibre reinforced polymer composite

(NFPC):

Natural fibre reinforced polymer composites

(PMC):

Polymer matrix composite

(NPFPC):

Natural plant fibre reinforced polymer composites

(PBS):

Polybutylene succinate

(PEC):

Polyester carbonate

(PLA):

Polylactic acid

Type 1:

Composite with 60%WG40%F

Type 2:

Composite with 50%WG50%F

Type 3:

Composite with 40%WG60%F

Wx :

Initial weight of the sample before degradation

Wy :

Final weight of the sample after degradation

Wt :

% Weight loss of the composite

References

  1. 1.

    Chee SS, Jawaid M, Sultan M, Alothman OY, Abdullah LC (2019) Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Compos Part B Eng 163:165–174

    CAS  Article  Google Scholar 

  2. 2.

    Bhuvaneswari HB, Vinayaka DL, Ilangovan M, Reddy N (2017) Completely biodegradable banana fiber-wheat gluten composites for dielectric applications. J Mater Sci Mater Electron 28:12383–12390

    CAS  Article  Google Scholar 

  3. 3.

    Venkateshwaran N, Elayaperumal A, Alavudeen A, Thiruchitrambalam M (2011) Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater Des 32:4017–4021

    CAS  Article  Google Scholar 

  4. 4.

    Doan TTL, Brodowsky H, Mäder E (2012) Jute fibre/epoxy composites: Surface properties and interfacial adhesion. Compos Sci Technol 72:1160–1166

    CAS  Article  Google Scholar 

  5. 5.

    Coroller G, Lefeuvre A, Le Duigou A, Bourmaud A, Ausias G, Gaudry T, Baley C (2013) Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Compos Part A Appl Sci Manuf 51:62–70

    CAS  Article  Google Scholar 

  6. 6.

    Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B Eng 133:210–217

    CAS  Article  Google Scholar 

  7. 7.

    Guna V, Ilangovan M, Hu C, Venkatesh K, Reddy N (2019) Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Ind Crops Prod 131:25–31

    CAS  Article  Google Scholar 

  8. 8.

    Wu CS, Tsou CH (2019) Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. J Polym Res 26:1–9

    Article  CAS  Google Scholar 

  9. 9.

    Suresh Kumar SM, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69

    CAS  Article  Google Scholar 

  10. 10.

    Setua DK, Dutta B (1984) Short silk fiber-reinforced polychloroprene rubber composites. J Appl Polym Sci 29:3097–3114

    CAS  Article  Google Scholar 

  11. 11.

    Babu RJ, Mathew S, Jacob SR, George SC, Jacob JC (2015) Optimization of Human Hair Length in a Natural Rubber Based Composite. Trans Indian Inst Met 68:87–90

    Article  Google Scholar 

  12. 12.

    Choudary RB, Nehanth R (2019) Effects of fibre content on mechanical properties of chicken feather fibre/PP composites. Mater Today Proc 18:303–309

    CAS  Article  Google Scholar 

  13. 13.

    Oladele IO, Olajide JL, Ogunbadejo AS (2015) The influence of chemical treatment on the mechanical behaviour of animal fibre reinforced high density polyethylene composites. Am J Eng Res 2320–847

  14. 14.

    Akderya T, Özmen U, Baba BO (2020) Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic acid) biocomposites. J Polym Res 27:

  15. 15.

    Baghaei B, Compiet S, Skrifvars M (2020) Mechanical properties of all-cellulose composites from end-of-life textiles. J Polym Res 27:1–9

    Article  CAS  Google Scholar 

  16. 16.

    Chen S, Cheng L, Huang H, Zou F, Zhao HP (2017) Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos Part A Appl Sci Manuf 95:125–131

    CAS  Article  Google Scholar 

  17. 17.

    Faezipour M, Shamsi R, Ashori A, Abdulkhani A, Kargarfard A (2016) Hybrid composite using recycled polycarbonate/waste silk fibers and wood flour. Polym Compos 37:1667–1673

    CAS  Article  Google Scholar 

  18. 18.

    Kumar N, Singh A, Ranjan R (2019) Fabrication and mechanical characterization of horse hair (HH) reinforced polypropylene (PP) composites. In: Materials Today: Proceedings. Elsevier Ltd, pp 622–625

  19. 19.

    Zhou M, Yan J, Li Y, Geng C, He C, Wang K, Fu Q (2013) Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). RSC Adv 3:26418–26426

    CAS  Article  Google Scholar 

  20. 20.

    Lee MW, Han SO, Seo YB (2008) Red algae fibre/poly(butylene succinate) biocomposites: The effect of fibre content on their mechanical and thermal properties. Compos Sci Technol 68:1266–1272

    CAS  Article  Google Scholar 

  21. 21.

    Manshor MR, Anuar H, Nur Aimi MN, Ahmad Fitrie MI, Wan Nazri WB, Sapuan SM, El Shekeil YA, Wahit MU (2014) Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater Des 59:279–286

    CAS  Article  Google Scholar 

  22. 22.

    Boudria A, Hammoui Y, Adjeroud N, Djerrada N, Madani K (2018) Effect of filler load and high-energy ball milling process on properties of plasticized wheat gluten/olive pomace biocomposite. Adv Powder Technol 29:1230–1238

    CAS  Article  Google Scholar 

  23. 23.

    Reddy N, Yang Y (2011) Biocomposites developed using water-plasticized wheat gluten as matrix and jute fibers as reinforcement. Polym Int 60:711–716

    CAS  Article  Google Scholar 

  24. 24.

    Fitch-Vargas PR, Camacho-Hernández IL, Martínez-Bustos F, Islas-Rubio AR, Carrillo-Cañedo KI, Calderón-Castro A, Jacobo-Valenzuela N, Carrillo-López A, Delgado-Nieblas CI, Aguilar-Palazuelos E (2019) Mechanical, physical and microstructural properties of acetylated starch based biocomposites reinforced with acetylated sugarcane fiber. Carbohydr Polym 219:378–386

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Kim JT, Netravali AN (2010) Mechanical, thermal, and interfacial properties of green composites with ramie fiber and soy resins. J Agric Food Chem 58:5400–5407

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Nataraj D, Sakkara S, Meenakshi HN, Reddy N (2018) Properties and applications of citric acid crosslinked banana fibre-wheat gluten films. Ind Crops Prod 124:265–272

    CAS  Article  Google Scholar 

  27. 27.

    Sekhar MC, Veerapratap S, Song JI, Luo N, Zhang J, Rajulu AV, Rao KC (2012) Tensile properties of short waste silk fibers/wheat protein isolate green composites. Mater Lett 77:86–88

    CAS  Article  Google Scholar 

  28. 28.

    Thammahiwes S, Riyajan SA, Kaewtatip K (2018) Effect of shrimp shell waste on the properties of wheat gluten based bioplastics. J Polym Environ 26:1775–1781

    CAS  Article  Google Scholar 

  29. 29.

    Muneer F, Johansson E, Hedenqvist MS, Gällstedt M, Newson WR (2014) Preparation, properties, protein cross linking and biodegradability of plasticizer solvent free hemp fibre reinforced wheat gluten, glutenin, and gliadin composites. Bio Resources 9:5246–5261

    Google Scholar 

  30. 30.

    Thammahiwes S, Riyajan SA, Kaewtatip K (2017) Preparation and properties of wheat gluten based bioplastics with fish scale. J Cereal Sci 75:186–191

    CAS  Article  Google Scholar 

  31. 31.

    Hemsri S, Grieco K, Asandei AD, Parnas RS (2012) Wheat gluten composites reinforced with coconut fiber. Compos Part A Appl Sci Manuf 43:1160–1168

    CAS  Article  Google Scholar 

  32. 32.

    Wu Q, Rabu J, Goulin K, Sainlaud C, Chen F, Johansson E, Olsson RT, Hedenqvist MS (2017) Flexible strength-improved and crack resistant biocomposites based on plasticised wheat gluten reinforced with a flax-fibre-weave. Compos Part A Appl Sci Manuf 94:61–69

    CAS  Article  Google Scholar 

  33. 33.

    Song Y, Zheng Q (2008) Improved tensile strength of glycerol-plasticized gluten bioplastic containing hydrophobic liquids. Bioresour Technol 99:7665–7671

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Gällstedt M, Mattozzi A, Johansson E, Hedenqvist MS (2004) Transport and tensile properties of compression-molded wheat gluten films. Biomacromol 5:2020–2028

    Article  CAS  Google Scholar 

  35. 35.

    Kunanopparat T, Menut P, Morel MH, Guilbert S (2008) Plasticized wheat gluten reinforcement with natural fibers: Effect of thermal treatment on the fiber/matrix adhesion. Compos Part A Appl Sci Manuf 39:1787–1792

    Article  CAS  Google Scholar 

  36. 36.

    Song Y, Zheng Q, Liu C (2008) Influence of Glycerol Content on Properties of Wheat Gluten/Hydroxyethyl Cellulose Biocomposites. Chem Res Chin Univ 24:644–647

    CAS  Article  Google Scholar 

  37. 37.

    Yeng CM, Husseinsyah S, Ting SS (2015) Effect of Cross-linking Agent on Tensile Properties of Chitosan/Corn Cob Biocomposite Films. Polym Plast Technol Eng 54:270–275

    CAS  Article  Google Scholar 

  38. 38.

    Kale RD, Gorade VG, Parmaj O (2018) Waste Medical Cotton Reinforced Chitosan Biocomposite Film Using Tannic Acid as the Crosslinking Agent. J Nat Fibers 15:1–8

    Article  CAS  Google Scholar 

  39. 39.

    Rai SK, Priya SP (2006) Utilization of waste silk fabric as reinforcement for acrylonitrile butadiene styrene toughened epoxy matrix. J Reinf Plast Compos 25:565–574

    CAS  Article  Google Scholar 

  40. 40.

    Gyawali D, Nair P, Zhang Y, Tran RT, Zhang C, Samchukov M, Makarov M, Kim HKW, Yang J (2010) Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials 31:9092–9105

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Penniston KL, Nakada SY, Holmes RP, Assimos DG (2008) Quantitative assessment of citric acid in lemon juice, lime juice, and commercially available fruit juice products. J Endourol 22:567–570

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Huang Y, Ma X, Wang X, Liang X (2013) Determination of the interaction using FTIR within the composite gel polymer electrolyte. J Mol Struct 1031:30–37

    CAS  Article  Google Scholar 

  43. 43.

    Baishya P, Nath D, Begum P, Deka RC, Maji TK (2018) Effects of wheat gluten protein on the properties of starch based sustainable wood polymer nanocomposites. Eur Polym J 100:137–145

    CAS  Article  Google Scholar 

  44. 44.

    Majzoobi M, Abedi E (2014) Effects of pH changes on functional properties of native and acetylated wheat gluten. Int Food Res J 21:1183–1188

    Google Scholar 

  45. 45.

    Gennadios A, Brandenburg AH, Weller CL, Testin RF (1993) Effect of pH on properties of wheat gluten and soy protein isolate films. J Agric Food Chem 41:1835–1839

    CAS  Article  Google Scholar 

  46. 46.

    Nordqvist P, Khabbaz F, Malmström E (2010) Comparing bond strength and water resistance of alkali-modified soy protein isolate and wheat gluten adhesives. Int J Adhes Adhes 30:72–79

    CAS  Article  Google Scholar 

  47. 47.

    Tschoegl NW, Alexander AE (1960) The surface chemistry of wheat gluten II. Measurements of surface viscoelasticity. J Colloid Sci 15:168–182

    CAS  Article  Google Scholar 

  48. 48.

    Chabrat E, Abdillahi H, Rouilly A, Rigal L (2012) Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends. I: Thermal, mechanical and morphological properties. Ind Crops Prod 37:238–246

    CAS  Article  Google Scholar 

  49. 49.

    Sen CB, Jafri H, Cao T, Robertson GH, Gregorski KS, Imam SH, Glenn GM, Orts WJ (2013) Modification of wheat gluten with citric acid to produce superabsorbent materials. J Appl Polym Sci 129:3192–3197

    Article  CAS  Google Scholar 

  50. 50.

    Cash D (2014) Acid-base titrations with citric acid: part 1. Chem13 News, University of Waterloo. https://uwaterloo.ca/chem13news/acid-base-titrations-citric-acid-part-1. Accessed 13 Jan 2021

  51. 51.

    Rombouts I, Lagrain B, Delcour JA, Türe H, Hedenqvist MS, Johansson E, Kuktaite R (2013) Crosslinks in wheat gluten films with hexagonal close-packed protein structures. Ind Crops Prod 51:229–235

    CAS  Article  Google Scholar 

  52. 52.

    Amiri A, Farshi-Marandi P, Shahedi M (2019) Impact of sodium citrate on structural properties of gluten. J Food Sci Technol 56:1090–1093

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Muneer F, Johansson E, Hedenqvist MS, Plivelic TS, Kuktaite R (2019) Impact of pH modification on protein polymerization and structure–function relationships in potato protein and wheat gluten composites. Int J Mol Sci 20:

  54. 54.

    Arfvidsson C, Wahlund KG, Eliasson AC (2004) Direct molecular weight determination in the evaluation of dissolution methods for unreduced glutenin. J Cereal Sci 39:1–8

    CAS  Article  Google Scholar 

  55. 55.

    Li H, Wang J, Pan L, Lu Q (2019) Effect of amino and thiol groups of wheat gluten on the quality characteristics of Chinese noodles. J Food Sci Technol 56:2825–2835

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Müller RJ (2005) Biodegradability of Polymers: Regulations and methods for testing. In: Biopolymers Online. pp 365–374

  57. 57.

    Nissa RC, Fikriyyah AK, Abdullah AHD, Pudjiraharti S (2019) Preliminary study of biodegradability of starch-based bioplastics using ASTM G21–70, dip-hanging, and soil burial test methods. IOP Conf Ser Earth Environ Sci 277:012007

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial assistance received from the Department of Science and Technology, India under project number DST/TDT/AMT/2017/026.

Funding

A partial financial assistance is provided by DST (India) project number DST/TDT/AMT/2017/026 for this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ravi Kant.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, P., Kant, R., Nair, R. et al. Influence of natural crosslinker and fibre weightage on waste kibisu fibre reinforced wheatgluten biocomposite. J Polym Res 28, 106 (2021). https://doi.org/10.1007/s10965-021-02470-9

Download citation

Keywords

  • Biocomposite
  • Kibisu silk
  • Biodegradation
  • Green material
  • Bioplastics