Skip to main content
Log in

Investigation of the surface properties of dibutyl amine modified poly(styrene) based polymer by inverse gas chromatography method

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present study, poly(vinyl benzyl chloride) (PVBC) was prepared by the radical polymerization method. Then, PVBC was reacted with dibutyl amine to obtain tertiary amine-modified poly(styrene) based polymer (PVBC-Dibutyl amine) and the resulting polymer was characterized. Surface properties of the polymer were investigated by inverse gas chromatography method at infinite dilution region. For this purpose, the retention diagrams of carefully selected polar and non-polar solvents (probes) on PVBC-Dibutyl amine were obtained over a temperature range from 30 to 50 \(^\circ{\rm C}\). By using the diagrams, the dispersive component of the surface free energy of the polymer surface was calculated for the studied temperatures by two different methods. The specific enthalpy of adsorption and the specific component of the adsorption free energy of solvents on PVBC-Dibutyl amine which are adsorption thermodynamic parameters were determined for each solvent used. Using the adsorption data, Lewis acid and Lewis base parameters of PVBC-Dibutyl amine surface were calculated. The obtained parameters reflected that surface of PVBC-Dibutyl amine exhibited a basic behavior. Considering the values in the literature, the effect of dibutyl amine moieties in the structure of poly(styrene) based polymer PVBC-Dibutyl amine on the dispersive surface free energy and acid–base parameters of poly(styrene) was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Voelkel A, Andrzejewska E, Maga R, Andrzejewski M (1996) Examination of surfaces of solid polymers by inverse gas chromatography: 1. Dispersive properties. Polymer 37:455–462

    CAS  Google Scholar 

  2. Zou QC, Zhang SL, Qq T, Wang SM, Wu LM (2006) Surface characterization of poly(methyl methacrylate-co-n-butyl acrylate-co-cyclopentylstyryl-polyhedral oligomeric silsesquioxane) by inverse gas chromatography. J Chromatogr A 1110:140–145

    Article  CAS  PubMed  Google Scholar 

  3. Ugraskan V, Isık B, Yazıcı O, Cakar F (2020) Thermodynamic characterization of sodium alginate by inverse gas chromatography. J Chem Eng Data 65:1795–1801

    Article  CAS  Google Scholar 

  4. Topaloglu Yazıcı D, Askın A, Butun V (2006) Surface characteristics of 2-(diethylamino) ethyl methacrylate–2-(dimethylamino) ethyl methacrylate diblock copolymer determined by inverse gas chromatography. Surf Interface Anal 38:561–564

    Article  Google Scholar 

  5. Smidsord O, Guillet JE (1969) Study of polymer solute interactions by gas chromatography. Macromol 2:272–277

    Article  Google Scholar 

  6. Mohammadi-Jam S, Waters KE (2014) Inverse gas chromatography applications: A review. Adv Colloid Interface Sci 212:21–44

    Article  CAS  PubMed  Google Scholar 

  7. Adiguzel AC, Korkmaz B, Cakar F, Cankurtaran O, Hepuzer Gursel Y, Senkal BF, Karaman F (2020) Thermodynamics of a chalcone-based polymer by inverse gas chromatography method. Sigma J Eng Nat Sci 38:581–588

    Google Scholar 

  8. Ansari DM, Price GJ (2004a) Chromatographic estimation of filler surface energies and correlation with photodegradation of kaolin filled polyethylene. Polymer 45:1823–1831

    Article  CAS  Google Scholar 

  9. Cava D, Gavara R, Lagaron J, Voelkel A (2007) Surface characterization of poly (lactic acid) and polycaprolactone by inverse gas chromatography. J Chromatogr A 1148:86–91

    Article  CAS  PubMed  Google Scholar 

  10. Santos José MRCA, Guthrie TJ (2015) Lewis acid/base character and crystallisation properties of poly(butylene terephthalate). J Chromatogr A 1379:92–99

    Article  PubMed  Google Scholar 

  11. Reddy AS, Rani PR, Reddy KS (2013) Lewis acid–base properties of cellulose acetate phthalate polycaprolactonediol blend by inverse gas chromatography. Polym Eng Sci 53:1780–1785

    Article  Google Scholar 

  12. Adiguzel AC, Cakar F, Senkal BF, Cankurtaran O, Gursel Hepuzer Y, Karaman F (2019) Determination of glass transition temperature and surface properties of novel chalcone modified poly(styrene) based polymer. Therm Sci 23:193–202

    Article  Google Scholar 

  13. Yazici O, Karaman F (2015) Determination of surface energies and acidity-basicity numbers of protonated and deprotonated forms of poly(sulfonic acid diphenyl aniline) by inverse gas chromatography. Polym Eng Sci 55:1246–1254

    Article  CAS  Google Scholar 

  14. Papirer E, Brendle E, Balard H, Vergelati C (2000) Inverse gas chromatography investigation of the surface properties of cellulose. J Adhes Sci Technol 14:321–337

    Article  CAS  Google Scholar 

  15. Chehimi M, Lascelles S, Armes P (1995) Characterization of surface thermodynamic properties of p-toluene sulfonate-doped polypyrrole by inverse gas chromatography. Chromatographia 41:671–677

    Article  CAS  Google Scholar 

  16. Voelkel A (2004) Inverse gas chromatography in characterization of surface. Chemometr Intell Lab Syst 72:205–207

    Article  CAS  Google Scholar 

  17. Mittal KL (2000) Acid-base interactions: relevance to adhesion science and technology 2. Taylor Francis Ltd., Boston

    Google Scholar 

  18. Minagawa M, Kanoh H, Tanno S, Nishimoto Y (2003) Glass transition temperature Tg of free radically prepared polyacrylonitrile by inverse gas chromatography 1. A study on Tg of atactic monodisperse polystyrenes. Macromol Chem Phys 203:2475–2480

    Article  Google Scholar 

  19. Murakami Y, Inui T, Takegami Y (1983) Dispersion states of porous inorganic materials in polymer blends observed by inverse gas chromatography. Polymer 24:1596–1600

    Article  CAS  Google Scholar 

  20. Ghaemy M, Hadjmohammadi M, Tabaraki R (2000) Study of crystallinity of high-density polyethylene by inverse gas chromatography. Iran Polym J 9:117–124

    CAS  Google Scholar 

  21. Ansari DM, Price GJ (2004b) Correlation of mechanical properties of clay filled polyamide mouldings with chromatographically measured surface energies. Polymer 45:3663–3670

    Article  CAS  Google Scholar 

  22. Abel M-L, Chehimi MM, Fricker F, Delamar M, Brown AM, Watts JF (2002) Adsorption of poly (methyl methacrylate) and poly (vinyl chloride) blends onto polypyrrole: study by X-ray photoelectron spectroscopy, time-of-flight static secondary ion mass spectroscopy, and inverse gas chromatography. J Chromatogr A 969:273–285

    Article  CAS  PubMed  Google Scholar 

  23. Murakami Y, Enoki R, Ogoma Y, Kondo Y (1998) Studies on interaction between silica gel and polymer blend by inverse gas chromatography. Polym J 30:520–525

    Article  CAS  Google Scholar 

  24. Onjia A, Milonjić S, Jovanović N, Jovanović S (2000) An inverse gas chromatography study of macroporous copolymers based on methyl and glycidyl methacrylate. React Funct Polym 43:269–277

    Article  CAS  Google Scholar 

  25. Mekki A, Mettai B, Ihdene Z, Mahmoud R, Mekhalif Z (2013) Inverse gas chromatography characterization of polyaniline complexes: application to volatile organic compounds sensing. Iran Polym J 22:677–687

    Article  CAS  Google Scholar 

  26. Rjiba N, Nardin M, Drean JY, Frydrych R (2009) Comparison of surfaces properties of different types of cotton fibers by inverse gas chromatography. J Polym Res 17:25–32

    Article  Google Scholar 

  27. Clarke JT, Hammerschlag AH (1957) Mono (chloromethyl) styrene, its derivatives, and ion-exchange resins from polymers of aminated compound US2780604

  28. Cyganowskia P, Cierlik A, Leśniewicz A, Pohl P, Jermakowicz-Bartkowiak D (2019) Separation of Re(VII) from Mo(VI) by anion exchange resins synthesized using microwave heat. Hydrometall 185:12–22

    Article  Google Scholar 

  29. Gong MS, Lee CW (2003) Humidity-sensitive properties of gel polyelectrolyte based on cross-linked copolymers containing both ammonium salt and amine function. Mater Chem Phys 77:719–725

    Article  CAS  Google Scholar 

  30. Monthéard JP, Jegat C, Camps M (2007) Vinylbenzylchloride (chloromethylstyrene) polymers and copolymers. Recent reactions and applications. J Macromol Sci Part C Polym Rev 39:135–174

    Article  Google Scholar 

  31. Zhang X, Wang P, Zhu P, Ye C, Xi F (2000) Second order non-linear optical materials based on poly(p-chloromethyl styrene). Macromol Chem Phys 201:1853–1857

    Article  CAS  Google Scholar 

  32. Noel C, Ching KC, Large M, Reyx D, Kajzar F (1997) Synthesis and characterization of polymers containing 4-cyanobiphenyl-based side groups for nonlinear optical applications, 3.† Poly(p-chloromethylstyrene) derivatives. Macromol Chem Phys 198:1665–1678

    Article  CAS  Google Scholar 

  33. Yamashita K, KimuraY SH, Tsuda K (1991) Esterolysis of active esters by soluble thiol polymer. J Polym Sci Part A Polym Chem 29(5):777–779

    Article  CAS  Google Scholar 

  34. Oughlis S, Lessim S, Changotade S, Bollotte F, Poirier F, Helary G, Lataillade JJ, Migonney V, Lutomski D (2011) Development of proteomic tools to study protein adsorption on a biomaterial, titanium grafted with poly(sodium styrene sulfonate). J Chromatogr B 879:3681–3687

    Article  CAS  Google Scholar 

  35. Tabrizi MHN, Davaran S, Entezami AA (1996) Synthesis of diclofenac polymeric prodrugs and their hydrolysis reactivity. Iran Polym J 5:243–249

    CAS  Google Scholar 

  36. Dan M, Su Y, Xiao X, Li S, Zhang W (2013) A new family of thermo-responsive polymers based on poly[n-(4-vinylbenzyl)-n, n-dialkylamine]. Macromol 46:3137–3146

    Article  CAS  Google Scholar 

  37. Papadopoulou SK, Dritsas G, Karapanagiotis I, Zuburtikudis I, Panayiotou C (2010) Surface characterization of poly (2,2,3,3,3-pentafluoropropyl methacrylate) by inverse gas chromatography and contact angle measurements. Eur Polym J 46:202–208

    Article  CAS  Google Scholar 

  38. Conder JR, Young CL (1979) Physicochemical measurement by gas chromatography. Wiley, New York

    Google Scholar 

  39. Kiselev AV (1965) Non-specific and specific interactions of molecules of different electronic structures with solid surfaces. Discuss Faraday Soc 40:205–218

    Article  Google Scholar 

  40. Dorris GM, Gray DG (1980) Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Interface Sci 77:353–362

    Article  CAS  Google Scholar 

  41. Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon fibre epoxy composites. J Adhes 23:45–60

    Article  CAS  Google Scholar 

  42. Mukhopadhyay P, Schreiber H (1995) Aspects of acid–base interactions and use of inverse gas chromatography. Colloid Surf A Physicochem Eng Asp 100:47–71

    Article  CAS  Google Scholar 

  43. Kamdem DP, Bose SK, Luner P (1993) Inverse gas chromatography characterization of birch wood meal. Langmuir 9:3039–3044

    Article  CAS  Google Scholar 

  44. Riddle FL, Fowkes FM (1990) Spectral shifts in acid-base chemistry 1. van der Waals contributions to acceptor numbers. J Am Chem Soc 112:3259–3264

    Article  CAS  Google Scholar 

  45. Santos JMRCA, Guthrie JT (2005a) Analysis of interactions in multicomponent polymeric systems: the key-role of inverse gas chromatography. Mater Sci Eng R Rep 50:79–107

    Article  Google Scholar 

  46. Santos JMRCA, Guthrie JT (2005b) Study of a core-shell type impact modifier by inverse gas chromatography. J Chromatogr A 1070:147–154

    Article  CAS  PubMed  Google Scholar 

  47. Korkmaz B, Canlı NY, Ozdemir ZG, Okutan M, Hepuzer Gursel Y, Sarac A, Senkal BF (2016) Synthesis and electrical properties of hydrogen bonded liquid crystal polymer. J Mol Liq 219:1030–1035

    Article  CAS  Google Scholar 

  48. Sohn S, Yang S (2003) On the work of adhesion and peel strength between pressure sensitive adhesives and the polymeric films used in LCD devices. J Adhes Sci Technol 17:903–915

    Article  CAS  Google Scholar 

  49. Askın A, Etoz SS, Yazıcı DT, Tumsek F (2011) Examination of polystyrene by inverse GC: Part 1. below glass transition temperature. Chromatographia 73:109–115

    Article  Google Scholar 

Download references

Acknowledgment

This research has been supported by Yildiz Technical University Scientific Research Projects Coordination Department. Project Number: FDK-2018-3502

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö. Cankurtaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adıgüzel, A., Korkmaz, B., Çakar, F. et al. Investigation of the surface properties of dibutyl amine modified poly(styrene) based polymer by inverse gas chromatography method. J Polym Res 28, 83 (2021). https://doi.org/10.1007/s10965-021-02449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02449-6

Keywords

Navigation