Skip to main content
Log in

Preparation of dimer acid-based polyamide film by solution casting method and its properties optimization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The dimer acid-based polyamide (DAPA) was prepared by polymerization of dimer acid and ethylenediamine. And the film was prepared by the solution casting method, in which tetrahydrofuran was used as the solvent. Glycerol is introduced into the film by adding glycerol together with tetrahydrofuran and smearing it on the glassware before the film’s formation. The paper has evaluated the DAPA film packaging performance, which has rarely been studied, such as oxygen barrier property and optical properties. Through forming the film by the two means of adding glycerol, the paper has studied its property on the mechanic, morphology, oxygen barrier. The results of which show the differentiation of producing film in two ways. The tensile strength and elongation at break were increased by 80% and 228%. And the oxygen permeability was 0.00732 cm2/m2·dpa. The thermal processability of the film has been improved. Compared with other bio-based film, the DAPA film with glycerol solution has excellent mechanical properties, barrier property, and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boumbimba RM, Wang K, Hablot E, Bahlouli N, Ahzi S, Avérous L (2017) Renewable biocomposites based on cellulose fibers and dimer fatty acid polyamide: Experiments and modeling of the stress–strain behavior. Polym Eng Sci 57(1):95–104. https://doi.org/10.1002/pen.24390

    Article  CAS  Google Scholar 

  2. Park M, Lee S, Kim A, Choi I, Jihoon S, Kim Y-W (2018) Toughened and hydrophobically modified polyamide 11 copolymers with dimer acids derived from waste vegetable oil. J Appl Polym Sci 136:47174. https://doi.org/10.1002/app.47174

    Article  CAS  Google Scholar 

  3. Meier M, Metzger J, Schubert U (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802. https://doi.org/10.1039/B703294C

    Article  CAS  PubMed  Google Scholar 

  4. Francisco DL, Paiva LB, Aldeia W (2019) Advances in polyamide nanocomposites: A review. Polym Composite 40(3):851–870. https://doi.org/10.1002/pc.24837

    Article  CAS  Google Scholar 

  5. Lau WJ, Gray S, Matsuura T, Emadzadeh D, Paul Chen J, Ismail AF (2015) A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res 80:306–324. https://doi.org/10.1016/j.watres.2015.04.037

    Article  CAS  PubMed  Google Scholar 

  6. Patil SB, Inamdar SZ, Das KK, Akamanchi KG, Patil AV, Inamadar AC, Reddy KR, Raghu AV, Kulkarni RV (2020) Tailor-made electrically-responsive poly(acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: Synthesis, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 56:101525. https://doi.org/10.1016/j.jddst.2020.101525

    Article  CAS  Google Scholar 

  7. Sudha BP, Syed ZI, Kakarla RR, Anjanapura VR, Krishnamachari GA, Arun CI, Kusal KD, Raghavendra VK (2020) Functionally Tailored Electro-Sensitive Poly(Acrylamide)-g-Pectin Copolymer Hydrogel for Transdermal Drug Delivery Application: Synthesis, Characterization, In-vitro and Ex-vivo Evaluation. Drug Deliv Lett 10(3):185–196. https://doi.org/10.2174/2210303110666200206114632

    Article  CAS  Google Scholar 

  8. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Soni SK, Kulkarni RV (2019) Novel biocompatible poly(acrylamide)-grafted-dextran hydrogels: Synthesis, characterization and biomedical applications. J Microbiol Meth 159:200–210. https://doi.org/10.1016/j.mimet.2019.03.009

    Article  CAS  Google Scholar 

  9. Zhang J, Nuñez A, Strahan G, Ashby R, Huang K, Moreau R, Yan Z, Chen L, Ngo H (2020) An advanced process for producing structurally selective dimer acids to meet new industrial uses. Ind Crop Prod 146:112132. https://doi.org/10.1016/j.indcrop.2020.112132

    Article  CAS  Google Scholar 

  10. Von Czapiewski M, Meier MAR (2018) Synthesis of Dimer Fatty Acid Methyl Esters by Catalytic Oxidation and Reductive Amination: An Efficient Route to Branched Polyamides. Eur J Lipid SciTechnol 120(1):1700350. https://doi.org/10.1002/ejlt.201700350

    Article  CAS  Google Scholar 

  11. Gogoi G, Karak N (2017) Waterborne hyperbranched poly (ester amide urethane) thermoset: Mechanical, thermal and biodegradation behaviors Polym Degrad Stabil 143 https://doi.org/10.1016/j.polymdegradstab.2017.07.006

  12. Yu F, Saha P, Suh P, Kim J (2015) Green Polyurethane from Dimer Acid Based Polyether Polyols: Synthesis and Characterization J Appl Polym Sci 132 https://doi.org/10.1002/app.41410

  13. Kadam P, Mhaske S (2012) Effect of Piperazine Concentration on the Properties of Lower Purity Dimer Acid-Synthesized Polyamide Hot-Melt Adhesive. J Adhes Sci Technol 26:1267–1279. https://doi.org/10.1163/156856111X593595

    Article  CAS  Google Scholar 

  14. Freitas RFR, Klein C, Pereira MP, Duczinski RB, Einloft S, Seferin M, Ligabue R (2015) Lower purity dimer acid based polyamides used as hot melt adhesives: synthesis and properties. J Adhes Sci Technol. https://doi.org/10.1080/01694243.2014.1001961

    Article  Google Scholar 

  15. Carr W, Cook F, Yan H, Pfromm P (2001) Application of dimer acid–based polyamide for xerographic toners for textiles printing. J Appl Polym Sci 81:2399–2407. https://doi.org/10.1002/app.1680

    Article  CAS  Google Scholar 

  16. Wang X (2017) Effect of intercalating agents on structure and properties of dimer acid-based polyamide modified by in situ doping of Na-montmorillonite. Polym Advan Technol 28(8):1030–1037. https://doi.org/10.1002/pat.3849

    Article  CAS  Google Scholar 

  17. Horodytska O, Valdés FJ, Fullana A (2018) Plastic flexible films waste management – A state of art review. Waste Manage 77:413–425. https://doi.org/10.1016/j.wasman.2018.04.023

    Article  CAS  Google Scholar 

  18. Wang X (2014) Study on structure and properties of dimer acid-based polyamide nylon modified by situ doping of Na-Montmorillonite. Russ J Appl Chem 87(8):1184–1190. https://doi.org/10.1134/S1070427214080291

    Article  CAS  Google Scholar 

  19. Minkwitz R, Götz W, Reil F, Richter F (2016) Polymer Film comprising a co-Polyamide of a Diamine, a Dimer Acid and a Lactam. EP2017/072230,

  20. Hablot E, Donnio B, Bouquey M, Avérous L (2010) Dimer acid-based thermoplastic bio-polyamides: Reaction kinetics, properties and structure. Polymer 51(25):5895–5902. https://doi.org/10.1016/j.polymer.2010.10.026

    Article  CAS  Google Scholar 

  21. Mohsin M, Hossin A, Haik Y (2011) Thermal and mechanical properties of poly(vinyl alcohol) plasticized with glycerol. J Appl Polym Sci 122(5):3102–3109. https://doi.org/10.1002/app.34229

    Article  CAS  Google Scholar 

  22. Liang J, Xia Q, Wang S, Li J, Huang Q, Ludescher RD (2015) Influence of glycerol on the molecular mobility, oxygen permeability and microstructure of amorphous zein films. Food Hydrocoll 44:94–100. https://doi.org/10.1016/j.foodhyd.2014.09.002

    Article  CAS  Google Scholar 

  23. Ghosh A, Ali MA, Dias GJ (2009) Effect of Cross-Linking on Microstructure and Physical Performance of Casein Protein. Biomacromol 10(7):1681–1688. https://doi.org/10.1021/bm801341x

    Article  CAS  Google Scholar 

  24. Jost V, Kobsik K, Schmid M, Noller K (2014) Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohyd Polym 110:309–319. https://doi.org/10.1016/j.carbpol.2014.03.096

    Article  CAS  Google Scholar 

  25. Kumar R, Anandjiwala RD (2012) Flax-fabric-reinforced arylated soy protein composites: Brittle-matrix behavior. J Appl Polym Sci 124(4):3132–3141. https://doi.org/10.1002/app.35374

    Article  CAS  Google Scholar 

  26. Farhan A, Hani NM (2017) Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll 64:48–58. https://doi.org/10.1016/j.foodhyd.2016.10.034

    Article  CAS  Google Scholar 

  27. He M, Wang Z, Wang R, Zhang L, Jia Q (2016) Preparation of Bio-Based Polyamide Elastomer by Using Green Plasticizers. Polymers 8(7):257. https://doi.org/10.3390/polym8070257

    Article  PubMed Central  Google Scholar 

  28. Forssell P, Lahtinen R, Lahelin M, Myllärinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohyd Polym 47(2):125–129. https://doi.org/10.1016/S0144-8617(01)00175-8

    Article  CAS  Google Scholar 

  29. Xiao-Li S, Guo-Hua Z (2009) Effect of plasticizers on mechanical properties and permeabilities of sweet potato starch films. Sci and Tech of Food Industry 30(23):161–165. https://doi.org/10.1360/972009-754

    Article  Google Scholar 

  30. Hu D, Wang L (2016) Fabrication of antibacterial blend film from poly (vinyl alcohol) and quaternized chitosan for packaging. Mater Res Bull 78:46–52. https://doi.org/10.1016/j.materresbull.2016.02.025

    Article  CAS  Google Scholar 

  31. Komai K, Minoshima K, Tanaka K, Tokura T (2000) Effects of Stress Waveform and Water Absorption on Fatigue Fracture Behavior of Aramid/Epoxy Composites. Proceedings of the 1992 Annual Meeting of JSME/MMD 2000(0):97–98. https://doi.org/10.1299/jsmezairiki.2000.0_97

    Article  Google Scholar 

  32. Tian H, Wu W, Guo G, Gaolun B, Jia Q, Xiang A (2012) Microstructure and properties of glycerol plasticized soy protein plastics containing castor oil. J Food Eng 109(3):496–500. https://doi.org/10.1016/j.jfoodeng.2011.10.033

    Article  CAS  Google Scholar 

  33. Raghu AV, Gadaginamath GS, Mallikarjuna NN, Aminabhavi TM (2006) Synthesis and characterization of novel polyureas based on benzimidazoline-2-one and benzimidazoline-2-thione hard segments. J Appl Polym Sci 100(1):576–583. https://doi.org/10.1002/app.23334

    Article  CAS  Google Scholar 

  34. Raghu AV, Jeong HM (2008) Synthesis, characterization of novel dihydrazide containing polyurethanes based on N1, N2-bis[(4-hydroxyphenyl)methylene]ethanedihydrazide and various diisocyanates. J Appl Polym Sci 107(5):3401–3407. https://doi.org/10.1002/app.27447

    Article  CAS  Google Scholar 

  35. Qiao L, Jianqiang B, Qiannan X (2013) Research Progress of Packaging Performance of Protein Films. Packaging Eng 34(15):146–151. https://doi.org/10.19554/j.cnki.1001-3563.2013.15.032

    Article  Google Scholar 

  36. Li-li T, Yun-zhi C, Zheng-jian Z, Hua-feng Z (2017) Preparation of Microfibrillated Cellulose/Polylactic Acid Film and Its Property Analysis. Packaging Eng 38(15):47–52. https://doi.org/10.19554/j.cnki.1001-3563.2017.15.010

    Article  Google Scholar 

Download references

Acknowledgment

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors are grateful to the Special fund project for basic scientific research business expenses of Central Universities (2572018BL07) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, C. & Wu, Y. Preparation of dimer acid-based polyamide film by solution casting method and its properties optimization. J Polym Res 28, 68 (2021). https://doi.org/10.1007/s10965-021-02441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02441-0

Keywords

Navigation