Skip to main content

Advertisement

Log in

Recent trends in Nitrogen doped polymer composites: a review

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present era Nitrogen (N) doped polymer composites are more in demand due to catalysis, energy harvesting devices as supercapacitor, Li-ion batteries, solar cells, fuel cell and oxygen reduction reaction (ORR) in metal air batteries and defect engineering applications. N doped polymer moieties were modified by using various synthesis techniques followed by chemical bath deposition (CVD), arc discharge method, solvothermal method, pyrolysis, plasma treatment. The confirmation of N doped polymer moieties modified structure, relevant defects and morphologies of the samples were foreseen by using atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) followed by X-ray photoelectron spectroscopy (XPS) elemental contribution. In principle based on lone pair electrons of doped N provided additional negative charges it improved the specific capacitance of pristine sample preferred various electrochemical applications. Structural defects caused due to N doping may act as polarization centres. The N atom has more electronegativity as compared to carbon. Dielectric properties demonstrated increased dielectric permittivity with reduced loss. Obtained results showed N doping is a regulative tool to control the dielectric properties. We emphasized in the present review, synthesis roots, characterization techniques and recent applications of N doped polymer moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jin Y, Meng Y, Fan W, Lu H, Liu T, Wu S (2019) Free-standing macro-porous nitrogen doped graphene film for high energy density supercapacitor. Electrochim Acta 318:865–874. https://doi.org/10.1016/j.electacta.2019.06.107

    Article  CAS  Google Scholar 

  2. Zhou J, Chen Y, Li H, Dugnani R, Du Q, UrRehman H, Kang H, Liu H (2017) Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. J Mater Sci 53(6):4067–4077. https://doi.org/10.1007/s10853-017-1838-3

    Article  CAS  Google Scholar 

  3. Cong K, Radtke M, Stumpf S, Schröter B, McMillan DGG, Rettenmayr M, Ignaszak A (2015) Electrochemical stability of the polymer-derived nitrogen-doped carbon: An elusive goal? Materials for Renewable and Sustainable Energy 4 (2). https://doi.org/10.1007/s40243-015-0046-9

  4. Chen H, Sun F, Wang J, Li W, Qiao W, Ling L, Long D (2013) Nitrogen Doping Effects on the Physical and Chemical Properties of Mesoporous Carbons. J Phys Chem C 117(16):8318–8328. https://doi.org/10.1021/jp4017773

    Article  CAS  Google Scholar 

  5. Arjmand M, Sundararaj U (2015) Effects of Nitrogen Doping on X-band Dielectric Properties of Carbon Nanotube/Polymer Nanocomposites. ACS Appl Mater Interfaces 7(32):17844–17850. https://doi.org/10.1021/acsami.5b04211

    Article  CAS  PubMed  Google Scholar 

  6. Kang HS, Jeong S (2004) Nitrogen doping and chirality of carbon nanotubes. Phys Rev B 70 (23). https://doi.org/10.1103/PhysRevB.70.233411

  7. Xu H, Ma L, Jin Z (2018) Nitrogen-doped graphene: Synthesis, characterizations and energy applications. Journal of Energy Chemistry 27(1):146–160. https://doi.org/10.1016/j.jechem.2017.12.006

    Article  Google Scholar 

  8. Jiang F, Zhang J, Li N, Liu C, Zhou Y, Yu X, Sun L, Song Y, Zhang S, Wang Z (2019) Nitrogen-doped graphene prepared by thermal annealing of fluorinated graphene oxide as supercapacitor electrode. J Chem Technol Biotechnol 94(11):3530–3537. https://doi.org/10.1002/jctb.6147

    Article  CAS  Google Scholar 

  9. Jeon IY, Noh HJ, Baek JB (2020) Nitrogen-Doped Carbon Nanomaterials: Synthesis. Characteristics and Applications Chem Asian J 15(15):2282–2293. https://doi.org/10.1002/asia.201901318

    Article  CAS  Google Scholar 

  10. Zhang C, Ma B, Zhou Y (2019) Three-dimensional Polypyrrole Derived N-doped Carbon Nanotube Aerogel as a High-performance Metal-free Catalyst for Oxygen Reduction Reaction. ChemCatChem 11(22):5495–5504. https://doi.org/10.1002/cctc.201901334

    Article  CAS  Google Scholar 

  11. Zhu W, Wang H, Zhao R, Yang M, Liu Y, Yan D (2019) In situ fabrication of nitrogen doped porous carbon nanorods derived from metal-organic frameworks and its application as supercapacitor electrodes. J Solid State Chem 277:100–106. https://doi.org/10.1016/j.jssc.2019.05.040

    Article  CAS  Google Scholar 

  12. Li C, Hu Y, Yu M, Wang Z, Zhao W, Liu P, Tong Y, Lu X (2014) Nitrogen doped graphene paper as a highly conductive, and light-weight substrate for flexible supercapacitors. RSC Adv 4(94):51878–51883. https://doi.org/10.1039/c4ra11024b

    Article  CAS  Google Scholar 

  13. Zhou X, Qiao J, Yang L, Zhang J (2014) A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Adv Energy Mater 4 (8). https://doi.org/10.1002/aenm.201301523

  14. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5 (7). https://doi.org/10.1039/c2ee21802j

  15. Lee WJ, Maiti UN, Lee JM, Lim J, Han TH, Kim SO (2014) Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun (Camb) 50(52):6818–6830. https://doi.org/10.1039/c4cc00146j

    Article  CAS  Google Scholar 

  16. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098. https://doi.org/10.1039/c4cs00141a

    Article  CAS  PubMed  Google Scholar 

  17. Seyed Shirazi SF, Gharehkhani S, Yarmand H, Badarudin A, Cornelis Metselaar HS, Kazi SN (2015) Nitrogen doped activated carbon/graphene with high nitrogen level: Green synthesis and thermo-electrical properties of its nanofluid. Mater Lett 152:192–195. https://doi.org/10.1016/j.matlet.2015.03.110

    Article  CAS  Google Scholar 

  18. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  CAS  Google Scholar 

  19. Liu Y, Jin Z, Wang J, Cui R, Sun H, Peng F, Wei L, Wang Z, Liang X, Peng L, Li Y (2011) Nitrogen-Doped Single-Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. Adv Func Mater 21(5):986–992. https://doi.org/10.1002/adfm.201002086

    Article  CAS  Google Scholar 

  20. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  CAS  Google Scholar 

  21. Chang DW, Baek JB (2016) Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation. Chem Asian J 11(8):1125–1137. https://doi.org/10.1002/asia.201501328

    Article  CAS  PubMed  Google Scholar 

  22. Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48(3):575–586. https://doi.org/10.1016/j.carbon.2009.10.009

    Article  CAS  Google Scholar 

  23. Zhou N, Wang N, Wu Z, Li L (2018) Probing Active Sites on Metal-Free, Nitrogen-Doped Carbons for Oxygen Electroreduction: A Review. Catalysts 8 (11). https://doi.org/10.3390/catal8110509

  24. Ning X, Li Y, Ming J, Wang Q, Wang H, Cao Y, Peng F, Yang Y, Yu H (2019) Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem Sci 10(6):1589–1596. https://doi.org/10.1039/c8sc04596h

    Article  CAS  PubMed  Google Scholar 

  25. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20 (35). https://doi.org/10.1039/c0jm00782j

  26. Nabae Y (2018) Morphology-Controlled Nitrogen-Containing Polymers as Synthetic Precursors for Electrochemical Oxygen Reduction Fe/N/C Cathode Catalysts. Catalysts 8 (8). https://doi.org/10.3390/catal8080324

  27. Yang H, Yang Y, Zhang X, Li Y, Qaisrani NA, Zhang F, Hao C (2019) Nitrogen-Doped Porous Carbon Networks with Active Fe-Nx Sites to Enhance Catalytic Conversion of Polysulfides in Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 11(35):31860–31868. https://doi.org/10.1021/acsami.9b08962

    Article  CAS  PubMed  Google Scholar 

  28. Boncel S, Pattinson SW, Geiser V, Shaffer MS, Koziol KK (2014) En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Beilstein J Nanotechnol 5:219–233. https://doi.org/10.3762/bjnano.5.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hmar JJL, Majumder T, Dhar S, Mondal SP (2016) Sulfur and Nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications. Thin Solid Films 612:274–283. https://doi.org/10.1016/j.tsf.2016.06.014

    Article  CAS  Google Scholar 

  30. Park J, Park E, Kim S, Yu HY (2019) Nitrogen-Induced Enhancement of Synaptic Weight Reliability in Titanium Oxide-Based Resistive Artificial Synapse and Demonstration of the Reliability Effect on the Neuromorphic System. ACS Appl Mater Interfaces 11(35):32178–32185. https://doi.org/10.1021/acsami.9b11319

    Article  CAS  PubMed  Google Scholar 

  31. Arjmand M, Ameli A, Sundararaj U (2016) Employing Nitrogen Doping as Innovative Technique to Improve Broadband Dielectric Properties of Carbon Nanotube/Polymer Nanocomposites. Macromol Mater Eng 301(5):555–565. https://doi.org/10.1002/mame.201500365

    Article  CAS  Google Scholar 

  32. Liang Y, Zhang H, Zhang J, Cheng X, Zhu Y, Luo L, Lu S, Wei J, Wang H (2020) Porous 2D carbon nanosheets synthesized via organic groups triggered polymer particles exfoliation: An effective cathode catalyst for polymer electrolyte membrane fuel cells. Electrochim Acta 332. https://doi.org/10.1016/j.electacta.2019.135397

  33. Deka N, Deka J, Dutta GK (2018) Nitrogen-Doped Porous Carbon Derived from Carbazole-Substituted Tetraphenylethylene-Based Hypercrosslinked Polymer for High-Performance Supercapacitor. ChemistrySelect 3(29):8483–8490. https://doi.org/10.1002/slct.201801507

    Article  CAS  Google Scholar 

  34. Yadav R, Dixit CK (2017) Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. Journal of Science: Advanced Materials and Devices 2(2):141–149. https://doi.org/10.1016/j.jsamd.2017.05.007

    Article  Google Scholar 

  35. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085. https://doi.org/10.1021/ja3030565

    Article  CAS  PubMed  Google Scholar 

  36. Jia Q, Ramaswamy N, Tylus U, Strickland K, Li J, Serov A, Artyushkova K, Atanassov P, Anibal J, Gumeci C, Barton SC, Sougrati M-T, Jaouen F, Halevi B, Mukerjee S (2016) Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy 29:65–82. https://doi.org/10.1016/j.nanoen.2016.03.025

    Article  CAS  Google Scholar 

  37. Lazar P, Mach R, Otyepka M (2019) Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene. J Phys Chem C 123(16):10695–10702. https://doi.org/10.1021/acs.jpcc.9b02163

    Article  CAS  Google Scholar 

  38. Miao H, Li S, Wang Z, Sun S, Kuang M, Liu Z, Yuan J (2017) Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. Int J Hydrogen Energy 42(47):28298–28308. https://doi.org/10.1016/j.ijhydene.2017.09.138

    Article  CAS  Google Scholar 

  39. Kaur M, Kaur M, Sharma VK (2018) Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. Adv Colloid Interface Sci 259:44–64. https://doi.org/10.1016/j.cis.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  40. Fernandes DM, Peixoto AF, Freire C (2019) Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO2 conversion and valorisation. Dalton Trans 48(36):13508–13528. https://doi.org/10.1039/c9dt01691k

    Article  CAS  PubMed  Google Scholar 

  41. Krause B, Konidakis I, Arjmand M, Sundararaj U, Fuge R, Liebscher M, Hampel S, Klaus M, Serpetzoglou E, Stratakis E, Pötschke P (2020) Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient. Journal of Composites Science 4 (1). https://doi.org/10.3390/jcs4010014

  42. Siow KS, Abdul Rahman AS, Ng PY, Majlis BY (2020) Sulfur and nitrogen containing plasma polymers reduces bacterial attachment and growth. Mater Sci Eng C Mater Biol Appl 107:110225. https://doi.org/10.1016/j.msec.2019.110225

    Article  CAS  PubMed  Google Scholar 

  43. Lin Z, Waller G, Liu Y, Liu M, Wong C-P (2012) Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Adv Energy Mater 2(7):884–888. https://doi.org/10.1002/aenm.201200038

    Article  CAS  Google Scholar 

  44. Wang WL, Bai XD, Liu KH, Xu Z, Golberg D, Bando Y, Wang EG (2006) Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. J Am Chem Soc 128(20):6530–6531. https://doi.org/10.1021/ja0606733

    Article  CAS  PubMed  Google Scholar 

  45. Son M, Chee S-S, Kim S-Y, Lee W, Kim YH, Oh B-Y, Hwang JY, Lee BH, Ham M-H (2020) High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition. Carbon 159:579–585. https://doi.org/10.1016/j.carbon.2019.12.095

    Article  CAS  Google Scholar 

  46. Samangsri S, Chiarakorn S, Areerob T (2019) Synthesis of N-doped TiO2 Nanoparticle by Solvothermal Method for Dye Treatment. IOP Conference Series: Mater Sci Eng 576. https://doi.org/10.1088/1757-899x/576/1/012033

  47. Cai W, Wang C, Fang X, Yang L, Chen X (2015) Synthesis and characterization of nitrogen-doped graphene films using C5NCl5. Appl Phys Lett 106 (25). https://doi.org/10.1063/1.4922946

  48. Lee D-W, Jin M-H, Oh D, Lee S-W, Park J-S (2017) Straightforward Synthesis of Hierarchically Porous Nitrogen-Doped Carbon via Pyrolysis of Chitosan/Urea/KOH Mixtures and Its Application as a Support for Formic Acid Dehydrogenation Catalysts. ACS Sustain Chem Eng 5(11):9935–9944. https://doi.org/10.1021/acssuschemeng.7b01888

    Article  CAS  Google Scholar 

  49. Lin Y-C, Lin C-Y, Chiu P-W (2010) Controllable graphene N-doping with ammonia plasma. Appl Phys Lett 96:133110–133110. https://doi.org/10.1063/1.3368697

    Article  CAS  Google Scholar 

  50. Moon J, An J, Sim U, Cho SP, Kang JH, Chung C, Seo JH, Lee J, Nam KT, Hong BH (2014) One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Adv Mater 26(21):3501–3505. https://doi.org/10.1002/adma.201306287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen S, Chu W, Huang YY, Liu X, Tong DG (2012) Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities. Mater Res Bull 47(12):4514–4521. https://doi.org/10.1016/j.materresbull.2012.09.031

    Article  CAS  Google Scholar 

  52. Muhammad BL, Cummings F (2019) Nitrogen plasma treatment of ZnO and TiO2 nanowire arrays for polymer photovoltaic applications. Surfaces and Interfaces 17. https://doi.org/10.1016/j.surfin.2019.100382

  53. Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon SH (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26(20):16096–16102. https://doi.org/10.1021/la102425a

    Article  CAS  PubMed  Google Scholar 

  54. Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X (2013) Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62:296–301. https://doi.org/10.1016/j.carbon.2013.05.067

    Article  CAS  Google Scholar 

  55. Park S, Hu Y, Hwang JO, Lee ES, Casabianca LB, Cai W, Potts JR, Ha HW, Chen S, Oh J, Kim SO, Kim YH, Ishii Y, Ruoff RS (2012) Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun 3:638. https://doi.org/10.1038/ncomms1643

    Article  CAS  PubMed  Google Scholar 

  56. Chang Q, Wang R, Wang J, Muhammad Y, Zhao Z, Feng Z, Huang Z, Zhang Y, Zhao Z (2019) Nitrogen-Doped Hollow Copolymer Tube via Template-Free Asynchronous Polymerization with Highly Selective Separation of Hydrophilic Dipeptide for Enhancing Inhibitory Activity of Angiotensin Converting Enzyme. ACS Appl Mater Interfaces 11(35):31700–31708. https://doi.org/10.1021/acsami.9b11103

    Article  CAS  PubMed  Google Scholar 

  57. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 323(5915):760. https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  58. Kou J, Sun L-B (2016) Nitrogen-Doped Porous Carbons Derived from Carbonization of a Nitrogen-Containing Polymer: Efficient Adsorbents for Selective CO2 Capture. Ind Eng Chem Res 55(41):10916–10925. https://doi.org/10.1021/acs.iecr.6b02857

    Article  CAS  Google Scholar 

  59. Yuan H, Zhang X, Yan F, Zhang S, Zhu C, Li C, Zhang X, Chen Y (2018) Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials. Carbon 140:368–376. https://doi.org/10.1016/j.carbon.2018.08.073

    Article  CAS  Google Scholar 

  60. Qi X, Lin T, Zhang S, Xu J, Zhang H, Xu F, Huang F (2020) Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors. Microporous Mesoporous Mater 294. https://doi.org/10.1016/j.micromeso.2019.109884

  61. Qin L, Yuan Y, Wei W, Lv W, Niu S, He Y-B, Zhai D, Kang F, Kim J-K, Yang Q-H, Lu J (2017) Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. J Phys Chem C 122(25):13508–13514. https://doi.org/10.1021/acs.jpcc.7b12327

    Article  CAS  Google Scholar 

  62. Baro M, Jaidev, Ramaprabhu S (2020) Conductive and nitrogen-enriched porous carbon nanostructure derived from poly (para-phenylenediamine) for energy conversion and storage applications. Appl Surf Sci 503. https://doi.org/10.1016/j.apsusc.2019.144069

  63. Zhang XY, Sun SH, Sun XJ, Zhao YR, Chen L, Yang Y, Lu W, Li DB (2016) Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci Appl 5(10):e16130. https://doi.org/10.1038/lsa.2016.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mo R, Rooney D, Sun K, Yang HY (2017) 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat Commun 8:13949. https://doi.org/10.1038/ncomms13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang X, Li Q, Zhang Y, Yang Y, Cao Z, Xiong S (2018) Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source. Appl Surf Sci 442:565–574. https://doi.org/10.1016/j.apsusc.2018.02.173

    Article  CAS  Google Scholar 

  66. Francesco Amato MC, Arcudi Francesca, Prato Maurizio, Mituo Melina, Fernandes Elizabeth, Carreño Marcelo NP, Pereyra Inés, Bartoli Julio R (2019) Nitrogen-Doped Carbon Nanodots/PMMA Nanocomposites for Solar Cells Applications. Chem Eng Trans 74, 2019:6. https://doi.org/10.3303/CET1974185

  67. Shu Y, Maruyama J, Iwasaki S, Maruyama S, Shen Y, Uyama H (2017) Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor. J Power Sources 364:374–382. https://doi.org/10.1016/j.jpowsour.2017.08.059

    Article  CAS  Google Scholar 

  68. Kalambate PK, Rawool CR, Karna SP, Srivastava AK (2019) Nitrogen-doped graphene/palladium nanoparticles/porous polyaniline ternary composite as an efficient electrode material for high performance supercapacitor. Materials Science for Energy Technologies 2(2):246–257. https://doi.org/10.1016/j.mset.2018.12.005

    Article  Google Scholar 

  69. He J, He Y, Fan Y, Zhang B, Du Y, Wang J, Xu P (2017) Conjugated polymer-mediated synthesis of nitrogen-doped carbon nanoribbons for oxygen reduction reaction. Carbon 124:630–636. https://doi.org/10.1016/j.carbon.2017.08.081

    Article  CAS  Google Scholar 

  70. Kar P, Pradhan NC, Adhikari B (2010) Effect on Structure, Processability, and Conductivity of Poly(m-aminophenol) of the Initial Acidity/Basicity of the Polymerization Medium. Journal of Macromolecular Science, Part B 49(4):669–679. https://doi.org/10.1080/00222341003598406

    Article  CAS  Google Scholar 

  71. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477. https://doi.org/10.1021/nl2009058

    Article  CAS  PubMed  Google Scholar 

  72. Gao K, Wang B, Tao L, Cunning BV, Zhang Z, Wang S, Ruoff RS, Qu L (2019) Efficient Metal-Free Electrocatalysts from N-Doped Carbon Nanomaterials: Mono-Doping and Co-Doping. Adv Mater 31(13):e1805121. https://doi.org/10.1002/adma.201805121

    Article  CAS  PubMed  Google Scholar 

  73. Moussa G, Hajjar-Garreau S, Taberna P-L, Simon P, Matei Ghimbeu C (2018) Eco-Friendly Synthesis of Nitrogen-Doped Mesoporous Carbon for Supercapacitor Application. C 4 (2). https://doi.org/10.3390/c4020020

  74. Li OL, Prabakar K, Kaneko A, Park H, Ishizaki T (2019) Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts. Catal Today 337:102–109. https://doi.org/10.1016/j.cattod.2019.02.058

    Article  CAS  Google Scholar 

  75. Kumar KV, Preuss K, Lu L, Guo ZX, Titirici MM (2015) Effect of Nitrogen Doping on the CO2Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study. J Phys Chem C 119(39):22310–22321. https://doi.org/10.1021/acs.jpcc.5b06017

    Article  CAS  Google Scholar 

  76. Qezelsefloo E, Khalili S, Jahanshahi M, Peyravi M (2020) Adsorptive removal of CO2 on Nitrogen-doped porous carbon derived from polyaniline: Effect of chemical activation. Mater Chem Phys 239. https://doi.org/10.1016/j.matchemphys.2019.122304

  77. Zhu X, Chai S, Tian C, Fulvio PF, Han KS, Hagaman EW, Veith GM, Mahurin SM, Brown S, Liu H, Dai S (2013) Synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation. Macromol Rapid Commun 34(5):452–459. https://doi.org/10.1002/marc.201200793

    Article  CAS  PubMed  Google Scholar 

  78. Kiuchi H, Shibuya R, Kondo T, Nakamura J, Niwa H, Miyawaki J, Kawai M, Oshima M, Harada Y (2016) Lewis Basicity of Nitrogen-Doped Graphite Observed by CO2 Chemisorption. Nanoscale Res Lett 11(1):127. https://doi.org/10.1186/s11671-016-1344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wong WY, Daud WRW, Mohamad AB, Kadhum AAH, Loh KS, Majlan EH (2013) Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int J Hydrogen Energy 38(22):9370–9386. https://doi.org/10.1016/j.ijhydene.2012.12.095

    Article  CAS  Google Scholar 

  80. Liu Z, Yuan Y, Shang Y, Han W (2018) Structural changes and electrical properties of nanowelded multiwalled carbon nanotube junctions. Appl Opt 57(26):7435–7439. https://doi.org/10.1364/AO.57.007435

    Article  CAS  PubMed  Google Scholar 

  81. Watanabe H, Asano S, Fujita S-i, Yoshida H, Arai M (2015) Nitrogen-Doped, Metal-Free Activated Carbon Catalysts for Aerobic Oxidation of Alcohols. ACS Catalysis 5(5):2886–2894. https://doi.org/10.1021/acscatal.5b00375

    Article  CAS  Google Scholar 

  82. Büchele S, Chen Z, Mitchell S, Hauert R, Krumeich F, Pérez-Ramírez J (2019) Tailoring Nitrogen-Doped Carbons as Hosts for Single-Atom Catalysts. ChemCatChem 11(12):2812–2820. https://doi.org/10.1002/cctc.201900547

    Article  CAS  Google Scholar 

  83. Du J, Liu L, Yu Y, Zhang Y, Lv H, Chen A (2019) N-doped ordered mesoporous carbon spheres derived by confined pyrolysis for high supercapacitor performance. J Mater Sci Technol 35(10):2178–2186. https://doi.org/10.1016/j.jmst.2019.05.029

    Article  Google Scholar 

  84. Ge M, Hao H, Lv Q, Wu J, Li W (2020) Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor. Electrochim Acta 330. https://doi.org/10.1016/j.electacta.2019.135236

  85. Deka N, Barman J, Kasthuri S, Nutalapati V, Dutta GK (2020) Transforming waste polystyrene foam into N-doped porous carbon for capacitive energy storage and deionization applications. Appl Surf Sci 511. https://doi.org/10.1016/j.apsusc.2020.145576

  86. Chanwook Park JJ, Yun GJ (2019) Thermomechanical properties of mineralized nitrogen-doped carbon nanotube/polymer nanocomposites by molecular dynamics simulations. Compos B 161:639–650. https://doi.org/10.1016/j.compositesb.2019.01.002

    Article  CAS  Google Scholar 

  87. He H, Ma L, Fu S, Gan M, Hu L, Zhang H, Xie F, Jiang M (2019) Fabrication of 3D ordered honeycomb-like nitrogen-doped carbon/PANI composite for high-performance supercapacitors. Appl Surf Sci 484:1288–1296. https://doi.org/10.1016/j.apsusc.2019.04.133

    Article  CAS  Google Scholar 

  88. Mehetre SS, Maktedar SS, Singh M (2016) Understanding the mechanism of surface modification through enhanced thermal and electrochemical stabilities of N-doped graphene oxide. Appl Surf Sci 366:514–522. https://doi.org/10.1016/j.apsusc.2016.01.108

    Article  CAS  Google Scholar 

  89. Jung H, Choi HK, Oh Y, Hong H, Yu J (2020) Enhancement of thermo-mechanical stability for nanocomposites containing plasma treated carbon nanotubes with an experimental study and molecular dynamics simulations. Sci Rep 10(1):405. https://doi.org/10.1038/s41598-019-56976-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Montes-Zavala I, Castrejón-González EO, Sánchez-Balderas G, Pérez E, González-Calderón JA (2019) Effect of H bonds on thermal behavior and cohesion in polylactic acid nanocomposites and nitrogen-doped carbon nanotubes. J Mater Sci 55(8):3354–3368. https://doi.org/10.1007/s10853-019-04245-6

    Article  CAS  Google Scholar 

  91. Prathish KP, Barsan MM, Geng D, Sun X, Brett CMA (2013) Chemically modified graphene and nitrogen-doped graphene: Electrochemical characterisation and sensing applications. Electrochim Acta 114:533–542. https://doi.org/10.1016/j.electacta.2013.10.080

    Article  CAS  Google Scholar 

  92. Wright WP, Marsicano VD, Keartland JM, Erasmus RM, Dube SMA, Coville NJ (2014) The electrical transport properties of nitrogen doped carbon microspheres. Mater Chem Phys 147(3):908–914. https://doi.org/10.1016/j.matchemphys.2014.06.036

    Article  CAS  Google Scholar 

  93. Arthisree D, Madhuri W (2020) Optically active polymer nanocomposite composed of polyaniline, polyacrylonitrile and green-synthesized graphene quantum dot for supercapacitor application. Int J Hydrogen Energy 45(16):9317–9327. https://doi.org/10.1016/j.ijhydene.2020.01.179

    Article  CAS  Google Scholar 

  94. Ameli A, Arjmand M, Pötschke P, Krause B, Sundararaj U (2016) Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites. Carbon 106:260–278. https://doi.org/10.1016/j.carbon.2016.05.034

    Article  CAS  Google Scholar 

  95. Almadhoun MN, Hedhili MN, Odeh IN, Xavier P, Bhansali US, Alshareef HN (2014) Influence of Stacking Morphology and Edge Nitrogen Doping on the Dielectric Performance of Graphene-Polymer Nanocomposites. Chem Mater 26(9):2856–2861. https://doi.org/10.1021/cm5004565

    Article  CAS  Google Scholar 

  96. Kanygin MA, Sedelnikova OV, Asanov IP, Bulusheva LG, Okotrub AV, Kuzhir PP, Plyushch AO, Maksimenko SA, Lapko KN, Sokol AA, Ivashkevich OA, Lambin P (2013) Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites. J Appl Phys 113 (14). https://doi.org/10.1063/1.4800897

  97. Pawar SP, Arjmand M, Potschke P, Krause B, Fischer D, Bose S, Sundararaj U (2018) Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites. ACS Omega 3(8):9966–9980. https://doi.org/10.1021/acsomega.8b01239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Usachov D, Vilkov O, Gruneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett 11(12):5401–5407. https://doi.org/10.1021/nl2031037

    Article  CAS  PubMed  Google Scholar 

  99. Yu Q, Xu Q, Li H, Yang K, Li X (2019) Effects of heat treatment on the structure and photocatalytic activity of polymer carbon nitride. J Mater Sci 54(23):14599–14608. https://doi.org/10.1007/s10853-019-03895-w

    Article  CAS  Google Scholar 

  100. Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3(3):802–812. https://doi.org/10.1039/c2ra22664b

    Article  CAS  Google Scholar 

  101. Tang L, Ji R, Li X, Teng KS, Lau SP (2013) Energy-level structure of nitrogen-doped graphene quantum dots. J Mater Chem C 1 (32). https://doi.org/10.1039/c3tc30877d

  102. Ikemoto K, Yang S, Naito H, Kotani M, Sato S, Isobe H (2020) A nitrogen-doped nanotube molecule with atom vacancy defects. Nat Commun 11(1):1807. https://doi.org/10.1038/s41467-020-15662-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang Y, Gu L, Guo S, Shao S, Li Z, Sun Y, Hao S (2019) N-Doped Mesoporous Carbons: From Synthesis to Applications as Metal-Free Reduction Catalysts and Energy Storage Materials. Front Chem 7:761. https://doi.org/10.3389/fchem.2019.00761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vinodh R, Babu RS, Gopi CVVM, Deviprasath C, Atchudan R, Samyn LM, de Barros ALF, Kim H-J, Yi M (2020) Influence of annealing temperature in nitrogen doped porous carbon balls derived from hypercross-linked polymer of anthracene for supercapacitor applications. Journal of Energy Storage 28. https://doi.org/10.1016/j.est.2020.101196

  105. Kwon OS, Park SJ, Hong J-Y, Han AR, Lee JS, Lee JS, Oh JH, Jang J (2012) Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2):1486–1493

    Article  CAS  Google Scholar 

  106. Huang J, Lin Y, Ji M, Cong G, Liu H, Yu J, Yang B, Li C, Zhu C, Xu J (2020) Nitrogen-doped porous carbon derived from foam polystyrene as an anode material for lithium-ion batteries. Appl Surf Sci 504. https://doi.org/10.1016/j.apsusc.2019.144398

  107. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4(4):1144–1173. https://doi.org/10.1039/c5ta08620e

    Article  CAS  Google Scholar 

  108. Lee WH, Moon JH (2014) Monodispersed N-doped carbon nanospheres for supercapacitor application. ACS Appl Mater Interfaces 6(16):13968–13976. https://doi.org/10.1021/am5033378

    Article  CAS  PubMed  Google Scholar 

  109. Duan L, Zhao L, Cong H, Zhang X, Lu W, Xue C (2019) Plasma Treatment for Nitrogen-Doped 3D Graphene Framework by a Conductive Matrix with Sulfur for High-Performance Li-S Batteries. Small 15(7):e1804347. https://doi.org/10.1002/smll.201804347

    Article  CAS  PubMed  Google Scholar 

  110. Li OL, Chiba S, Wada Y, Panomsuwan G, Ishizaki T (2017) Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J Mater Chem A 5(5):2073–2082. https://doi.org/10.1039/c6ta08962c

    Article  CAS  Google Scholar 

  111. Xiao PW, Zhao L, Sui ZY, Han BH (2017) Synthesis of Core-Shell Structured Porous Nitrogen-Doped Carbon@Silica Material via a Sol-Gel Method. Langmuir 33(24):6038–6045. https://doi.org/10.1021/acs.langmuir.7b00331

    Article  CAS  PubMed  Google Scholar 

  112. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials:NA-NA. https://doi.org/10.1002/adma.200901285

  113. Sun Y, Zhang Q, Zhang C, Liu J, Guo Y, Song D (2019) In Situ Approach to Dendritic Fibrous Nitrogen-Doped Carbon Nanospheres Functionalized by Brønsted Acidic Ionic Liquid and Their Excellent Esterification Catalytic Performance. ACS Sustain Chem Eng 7(17):15114–15126. https://doi.org/10.1021/acssuschemeng.9b03848

    Article  CAS  Google Scholar 

  114. Sruthi PR, Anas S (2020) An overview of synthetic modification of nitrile group in polymers and applications. J Polym Sci 58(8):1039–1061. https://doi.org/10.1002/pol.20190190

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The Authors would like to gratefully acknowledge the Institute of Chemical Technology Mumbai Marathwada Jalna for providing doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 3614 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, P., Joshi, G. Recent trends in Nitrogen doped polymer composites: a review. J Polym Res 28, 73 (2021). https://doi.org/10.1007/s10965-021-02436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02436-x

Keywords

Navigation