Skip to main content
Log in

Synthesis and optimization selective ion-imprinted polymer for the elimination of Ca II ions using Taguchi design

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript


One of the most important problems associated with calcium measurement is the possibility of underdiagnosed due to a false prediction of hypercalcemia results. Ion imprinting has become one of the fast growing technologies that have gained a lot of attention recently especially in the area of materials science. The present work proposes the synthesis and characterization of ion-imprinted polymer (IIP) in the form of porous film for the removal of Ca (II) from aqueous solution and human blood serum. Ca (II)-IIP films are prepared from mixing of two naturally formed biopolymers cellulose and sodium alginate, CaCl2, ECH, EDTA are used as the source of template ions, cross-linker and extraction agent, respectively. Taguchi method is used to optimize the synthesis and adsorption parameters of the new developed IIP. The optimum IIP films are characterized using FTIR, TGA, FESEM and XRD for determining the performance of the imprinting process achieved. PH dosage, initial concentration, reusability, selectivity, isotherm and kinetic study are investigated for the optimized IIP in Ca (II) aqueous solution. The resulted optimum conditions are pH 5.9, initial concentration (50 mg/l), dosage (300 mg) and 90 min contact time. It was clear from the adsorption data that the Ca (II) sorption by Ca (II)-IIP was fitted with the Langmuir isotherm model. The Langmuir adsorption constants for the adsorption of Ca (II) at room temperature are calculated to be (0.017 L/mg) and the R is 0.9469. The rate of removal of Ca (II) by Ca (II)-IIP is sustained between 98.99 and 86.12% for five periods. Furthermore, findings show that the Ca (II)-IIP is can successfully applied for the removal of free Ca (II) ions in human blood serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others


  1. Rosol TJ, Capen CC (1996) Pathophysiology of Calcium, Phosphorus, and Magnesium Metabolism in Animals. Veterinary Clinics of North America: Small Animal Practice 26(5):1155–1184

    Article  CAS  Google Scholar 

  2. Buege MJ, Do B, Lee HC, Weber DM, Horowitz SB, Feng L, Qing Y, Shank BR (2019) Corrected calcium versus ionized calcium measurements for identifying hypercalcemia in patients with multiple myeloma. Cancer Treatment and Research Communications 21:100159

    Article  Google Scholar 

  3. Titchenal CA, Dobbs J (2007) A system to assess the quality of food sources of calcium. J Food Compos Anal 20(8):717–724

    Article  CAS  Google Scholar 

  4. Danner JA (2017) Predictive Model to Estimate Ionized calcium from Routine Serum Biochemical Profile in Dogs, in Veterinary Clinical Medicine , University of Illinois at Urbana: Urbana, Illinois. p. 81

  5. Gelli R, Ridi F, Baglioni P (2019) The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Coll Interface Sci 269:219–235

    Article  CAS  Google Scholar 

  6. Schreckenberg R, Schlüter K-D (2018) Calcium sensing receptor expression and signalling in cardiovascular physiology and disease. Vascul Pharmacol 107:35–42

    Article  CAS  Google Scholar 

  7. Kimura S, Iwasaki T, Oe K, Shimizu K, Suemori T, Kanazawa T, Shioji N, Kuroe Y, Matsuoka Y, Morimatsu H (2018) High Ionized Calcium Concentration Is Associated With Prolonged Length of Stay in the Intensive Care Unit for Postoperative Pediatric Cardiac Patients. J Cardiothorac Vasc Anesth 32(4):1667–1675

    Article  CAS  Google Scholar 

  8. Schenck P, Chew D, Nagode L, Rosol T (2006) Disorders of Calcium: Hypercalcemia and Hypocalcemia. Fluid Therapy in Small Animal Practice p. 122-194

  9. Baird GS (2011) Ionized calcium. Clin Chim Acta 412(9):696–701

    Article  CAS  Google Scholar 

  10. Yan Y, Ge M, Ma R, Zhao H, Wang D, Hu C, Wang J, Chen W, Zhang C (2016) A candidate reference method for serum calcium measurement by inductively coupled plasma mass spectrometry. Clin Chim Acta 461:141–145

    Article  CAS  Google Scholar 

  11. D’Orazio P, Visnick H, Balasubramanian S (2016) Accuracy of commercial blood gas analyzers for monitoring ionized calcium at low concentrations. Clin Chim Acta 461:34–40

    Article  CAS  Google Scholar 

  12. Björkman MP, Sorva AJ, Tilvis RS (2009) Calculated serum calcium is an insufficient surrogate for measured ionized calcium. Arch Gerontol Geriatr 49(3):348–350

    Article  Google Scholar 

  13. Rudnicki M, Frolich A, Haaber A, Thode J (1992) Actual ionized calcium (at actual pH) vs adjusted ionized calcium (at pH 7.4) in hemodialyzed patients. Clin Chem 38(7):1384

  14. Thode J, Holmegaard SN, Transbol I, Fogh-Andersen N, Siggaard-Andersen O (1990) Adjusted ionized calcium (at pH 7.4) and actual ionized calcium (at actual pH) in capillary blood compared for clinical evaluation of patients with disorders of calcium metabolism. Clin Chem 36(3):541–4

  15. Rivara MB, Ravel V, Kalantar-Zadeh K, Streja E, Lau WL, Nissenson AR, Kestenbaum B, de Boer IH, Himmelfarb J, Mehrotra R (2015) Uncorrected and Albumin-Corrected Calcium, Phosphorus, and Mortality in Patients Undergoing Maintenance Dialysis. J Am Soc Nephrol 26(7):1671–1681

    Article  CAS  Google Scholar 

  16. Pfitzenmeyer P, Martin I, d’Athis P, Grumbach Y, Delmestre MC, Blonde-Cynober F, Derycke B, Brondel L, N. Club Francophone de Geriatrie et, (2007) A new formula for correction of total calcium level into ionized serum calcium values in very elderly hospitalized patients. Arch Gerontol Geriatr 45(2):151–157

    Article  CAS  Google Scholar 

  17. Zheng Y, Zhuang F, Zhu Q, Ma S, Xu Y, Lu J, Hao G, Gu Y, Hao C, Zhu M, Ding F (2017) Albumin-corrected total/ionized calcium ratio is not superior to total/ionized calcium ratio as an indicator of citrate accumulation. Int J Artif Organs 40(11):602–606

    Article  CAS  Google Scholar 

  18. Wang Y, Zhu S, Liao Y, Xiong X (2014) A calcium ion-imprinted porous film prepared from a cellulose-alginate composite. J Polym Res 21(12):612

    Article  Google Scholar 

  19. Mafu LD, Msagati TA, Mamba BB (2013) Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications. Environ Sci Pollut Res Int 20(2):790–802

    Article  CAS  Google Scholar 

  20. Saraji M, Yousefi H (2009) Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. J Hazard Mater 167(1):1152–1157

    Article  CAS  Google Scholar 

  21. Andaç M, Özyapı E, Şenel S, Say R, Denizli A (2006) Ion-Selective Imprinted Beads for Aluminum Removal from Aqueous Solutions. Ind Eng Chem Res 45(5):1780–1786

    Article  Google Scholar 

  22. Lorenzo RA, Carro AM, Alvarez-Lorenzo C, Concheiro A (2011) To remove or not to remove? The challenge of extracting the template to make the cavities available in Molecularly Imprinted Polymers (MIPs). Int J Mol Sci 12(7):4327–4347

    Article  CAS  Google Scholar 

  23. Zhou J, Zhang L (2001) Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution. J Polym Sci, Part B: Polym Phys 39(4):451–458

    Article  CAS  Google Scholar 

  24. Huang RYM, Pal R, Moon GY (1999) Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures. J Membr Sci 160(1):101–113

    Article  CAS  Google Scholar 

  25. Fan L, Du Y, Huang R, Wang Q, Wang X, Zhang L (2005) Preparation and characterization of alginate/gelatin blend fibers. J Appl Polym Sci 96(5):1625–1629

    Article  CAS  Google Scholar 

  26. Moore EW (1970) Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes. J Clin Investig 49(2):318–334

    Article  CAS  Google Scholar 

  27. Li M, Meng X, Liang X, Yuan J, Hu X, Wu Z, Yuan X (2018) A novel In(III) ion-imprinted polymer (IIP) for selective extraction of In(III) ions from aqueous solutions. Hydrometallurgy 176:243–252

    Article  CAS  Google Scholar 

  28. Alizadeh T,  Shamkhali AN, Hanifehpour Y, Joo S (2016) A Ca2+ selective membrane electrode based on calcium-imprinted polymeric nanoparticles. New J Chem 40

  29. Ben Dekhil A, Hannachi Y, Ghorbel A, Taoufik B (2011) Comparative Study of the Removal of Cadmium from Aqueous Solution by using Low-cost Adsorbents. J Environ Sci Technol 4:520–533

  30. Yusof NF, Mehamod F, Abdul Kadir M , Mohd Suah F (2018) Characteristics of adsorption isotherm and kinetic study for newly prepared Co 2+ -imprinted polymer linkage with dipicolinic acid. IOP Conference Series. Mat Sci Eng 440:012005

  31. Mittal A, Kurup L, Mittal J (2007) Freundlich and Langmuir Adsorption Isotherms and Kinetics for the Removal of Tartrazine from Aqueous Solutions Using Hen Feathers. J Hazard Mater 146:243–248

    Article  CAS  Google Scholar 

  32. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, isotherm, and thermodynamic data for selective adsorption of Cr(VI) from aqueous solution by Indonesia (Ende-Flores) natural zeolite Cr(VI)-imprinted-poly(4-VP-co-EGDMA)-ANZ (IIP-ANZ). Data in Brief 17:1020–1029

    Article  Google Scholar 

  33. Malkoc E, Nuhoglu Y (2007) Potential of Tea Factory Waste for Chromium (VI) Removal From Aqueous Solutions: Thermodynamic and Kinetic Studies. Sep Purif Technol 54:291–298

    Article  CAS  Google Scholar 

  34. George AM, Tembhurkar AR (2020) Taguchi experimental design for adsorptive removal of fluoride from water using novel Ficus Glomerata Bark-developed biosorbent. Int J Environ Sci Technol

  35. Pfitzenmeyer P, Martin I, d’Athis P, Grumbach Y, Delmestre MC, Blondé-Cynober F, Derycke B, Brondel L (2007) A new formula for correction of total calcium level into ionized serum calcium values in very elderly hospitalized patients. Arch Gerontol Geriatr 45(2):151–157

    Article  CAS  Google Scholar 

  36. Tamahkar Irmak E, Bakhshpour M, Andaç M, Denizli A (2017) Ion imprinted cryogels for selective removal of Ni (II) ions from aqueous solutions

  37. Wang L, Li J, Wang J, Guo X, Wang X, Choo J, Chen L (2019) Green multi-functional monomer-based ion imprinted polymers for selective removal of copper ions from aqueous solution. J Colloid Interface Sci 541:376–386

    Article  CAS  Google Scholar 

  38. Svenson J, Nicholls IA (2001) On the thermal and chemical stability of molecularly imprinted polymers. Anal Chim Acta 435(1):19–24

    Article  CAS  Google Scholar 

Download references


This research was funded by the Ministry of Higher Education, Malaysia under Fundamental Research Grant Scheme (FRGS) through (FRGS/1/2018/STG01/UPM/02/17) with the vote number of 5540122.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sazlinda Kamaruzaman.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Maibd, R., Al-Ashaq, W., Zainuddin, N. et al. Synthesis and optimization selective ion-imprinted polymer for the elimination of Ca II ions using Taguchi design. J Polym Res 28, 84 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: