Skip to main content
Log in

High cut-off membrane: evaluation of pore collapse and the synergistic effect of low and high molecular weight polyvinylpyrrolidone

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

High cut-off (HCO) membranes are the new class of membranes using in several applications like blood purification systems. In the current study, efforts were based upon achieving the HCO membrane with defined properties. Membrane pore collapse is the most challenging problem recognized as an undesirable phenomenon occurring in the drying stage of membrane preparation. Herein, this phenomenon was investigated in detail. The results verified that further of liquid surface tension, other parameters including viscosity, boiling point, polarity, and solubility parameters can be effective on the formation or prevention of this phenomenon. After preventing the pore collapse phenomenon, the simultaneous effect of low and high molecular weights polyvinylpyrrolidone (PVP) to achieve the HCO membrane was evaluated. PVP-K90 is used as a hydrophilizing agent and PVP-K17 is a low molecular weight polymer utilized as a pore-former additive. The synergistic effects of both grades of PVP, provide appropriate membrane features. Contact angle analysis indicated that by incorporation of PVP-K90 in casting solution, membrane hydrophilicity was increased tangibly. With the addition of more content of PVP-K90 higher than 3 wt%, pure water permeability (PWP) of the membrane was decreased. With adding PVP-K17 till 5 wt%, membrane PWP was enhanced significantly which confirmed the pore-former property of this additive. Moreover, mean pore diameter of membranes was increased and subsequently MWCO was enhanced to a higher value with the addition of this pore-former additive. MTT analysis endorsed the biocompatibility of membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11.
Fig. 12.
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mazinani S et al (2017) Phase separation analysis of Extem/solvent/non-solvent systems and relation with membrane morphology. J Membr Sci 526:301–314

    Article  CAS  Google Scholar 

  2. Barzin J, Sadatnia B (2007) Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/polyethersulfone systems. Polym 48(6):1620–1631

    Article  CAS  Google Scholar 

  3. Shahbabaei M, Kim D (2020) Exploring fast water permeation through aquaporin-mimicking membranes. Phys Chem Chem Phys

  4. Krishnan M et al (1994) Separation of monoclonal IgM antibodies using tangential flow ultrafiltration. Can J Chem Eng 72(6):982–990

    Article  CAS  Google Scholar 

  5. Lippi I et al (2015) Double filtration plasmapheresis in a dog with multiple myeloma and hyperviscosity syndrome. Open Vet J 5(2):108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arthanareeswaran G, Mohan D, Raajenthiren M (2010) Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive. J Membr Sci 350(1–2):130–138

    Article  CAS  Google Scholar 

  7. Chakrabarty B, Ghoshal A, Purkait M (2008) Effect of molecular weight of PEG on membrane morphology and transport properties. J Membr Sci 309(1–2):209–221

    Article  CAS  Google Scholar 

  8. Weidhase L et al (2019) Middle molecule clearance with high cut-off dialyzer versus high-flux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: A prospective randomized controlled trial. PLoS ONE 14(4):e0215823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Groopman JD et al (1984) High-affinity monoclonal antibodies for aflatoxins and their application to solid-phase immunoassays. Proc Natl Acad Sci 81(24):7728–7731

    Article  CAS  PubMed  Google Scholar 

  10. Ricci Z, Romagnoli S, Ronco C (2018) High cut-off membranes for continuous renal replacement therapy. In: Annual update in intensive care and emergency medicine, Springer, p. 357–369

  11. Yang Y, Wang P, Zheng Q (2006) Preparation and properties of polysulfone/TiO2 composite ultrafiltration membranes. J Polym Sci Part B Polym Phys 44(5):879–887

    Article  CAS  Google Scholar 

  12. Yang M-C, Lin W-C (2002) The grafting of chitosan oligomer to polysulfone membrane via ozone-treatment and its effect on anti-bacterial activity. J Polym Res 9(2):135–140

    Article  Google Scholar 

  13. Chu Z et al (2020) Performance improvement of polyethersulfone ultrafiltration membrane containing variform inorganic nano-additives. Polym 122160

  14. Van der Meeren P et al (2004) Colloid–membrane interaction effects on flux decline during cross-flow ultrafiltration of colloidal silica on semi-ceramic membranes. Phys Chem Chem Phys 6(7):1408–1412

    Article  Google Scholar 

  15. Kim K et al (2002) Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. J Membr Sci 199(1–2):135–145

    Article  CAS  Google Scholar 

  16. Ganj M et al (2019) Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. J Polym Res 26(9):231

    Article  CAS  Google Scholar 

  17. Subrahmanyan S (2003) An investigation of pore collapse in asymmetric polysulfone membranes, Virginia Tech

  18. da Silva Burgal J et al (2015) Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. J Membr Sci 493:524–538

    Article  Google Scholar 

  19. Lin C-E et al (2016) Poly (m-phenylene isophthalamide)(PMIA): A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes. J Membr Sci 518:72–78

    Article  CAS  Google Scholar 

  20. Zverina L et al (2020) Controlled pore collapse to increase solute rejection of modified PES membranes. J Membr Sci 595:117515

    Article  CAS  Google Scholar 

  21. Pinnau I, Freeman BD (2000) Formation and modification of polymeric membranes: overview, ACS Publications

  22. Beerlage MA (1994) Polyimide ultrafiltration membranes for non-aqueous systems, Universiteit Twente

  23. Barzin J et al (2018) Improved microfiltration and bacteria removal performance of polyethersulfone membranes prepared by modified vapor-induced phase separation. Polym Adv Technol 29(9):2420–2439

    Article  CAS  Google Scholar 

  24. Younas H et al (2019) Fabrication of high flux and fouling resistant membrane: A unique hydrophilic blend of polyvinylidene fluoride/polyethylene glycol/polymethyl methacrylate. Polym 179:121593

    Article  CAS  Google Scholar 

  25. Ponnaiyan P, Nammalvar G (2019) Effect of additives on graphene oxide incorporated polysulfone (PSF) membrane. Polym Bull 76(8):4003–4015

    Article  CAS  Google Scholar 

  26. Wei YM et al (2005) Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes for pervaporation separation of ethanol/water solution. J Appl Polym Sci 98(1):247–254

    Article  CAS  Google Scholar 

  27. Kim IC, Lee KH (2003) Effect of various additives on pore size of polysulfone membrane by phase-inversion process. J Appl Polym Sci 89(9):2562–2566

    Article  CAS  Google Scholar 

  28. Ahmad A, Sarif M, Ismail S (2005) Development of an integrally skinned ultrafiltration membrane for wastewater treatment: effect of different formulations of PSf/NMP/PVP on flux and rejection. Desalination 179(1–3):257–263

    Article  CAS  Google Scholar 

  29. Ponnaiyan P, Nammalvar G (2020) Enhanced performance of PSF/PVP polymer membrane by silver incorporation. Polym Bull 77(1):197–212

    Article  CAS  Google Scholar 

  30. Liu C et al (2017) Ultrafiltration membranes with tunable morphology and performance prepared by blending quaternized cardo poly (arylene ether sulfone) s ionomers with polysulfone. Sep Purif Technol 179:215–224

    Article  CAS  Google Scholar 

  31. Guillen GR et al (2013) Direct microscopic observation of membrane formation by nonsolvent induced phase separation. J Membr Sci 431:212–220

    Article  CAS  Google Scholar 

  32. Yoo SH et al (2004) Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight. J Membr Sci 236(1–2):203–207

    Article  CAS  Google Scholar 

  33. Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)–silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273(1):72–80

    Article  CAS  Google Scholar 

  34. Barzin J et al (2004a) Effect of polyvinylpyrrolidone on morphology and performance of hemodialysis membranes prepared from polyether sulfone. J Appl Polym Sci 92(6):3804–3813

    Article  CAS  Google Scholar 

  35. Pagidi A et al (2014) Enhanced oil–water separation using polysulfone membranes modified with polymeric additives. Desalination 344:280–288

    Article  CAS  Google Scholar 

  36. Matsuyama H et al (2003) Effect of PVP additive on porous polysulfone membrane formation by immersion precipitation method. Sep Sci Technol 38(14):3449–3458

    Article  CAS  Google Scholar 

  37. Barzin J et al (2004b) Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. J Membr Sci 237(1–2):77–85

    Article  CAS  Google Scholar 

  38. Buck, R. and H. Goehl, Perm selective asymmetric hollow fibre membrane for the separation of toxic mediators from blood. 2012, Google Patents.

  39. Mansur S et al (2018) Study on the effect of PVP additive on the performance of PSf/PVP ultrafiltration hollow fiber membrane. Malays J Fundam Appl Sci 14(3):343–347

    Article  Google Scholar 

  40. Mutlu Salmanli Ö et al (2019) Effect of PVP concentration on prepared PEI membranes for potential use on water treatment effect of additive on membranes prepared for water treatment. Water Supply

  41. Boschetti-de-Fierro A et al (2013) Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int J Artif Organs 36(7):455–463

    Article  PubMed  Google Scholar 

  42. Brown GL (1956) Formation of films from polymer dispersions. J Polym Sci 22(102):423–434

    Article  CAS  Google Scholar 

  43. Alam J et al (2019) k-Carrageenan–A versatile biopolymer for the preparation of a hydrophilic PVDF composite membrane. Eur Polymer J 120:109219

    Article  CAS  Google Scholar 

  44. Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146(1–3):35–40

    Article  CAS  Google Scholar 

  45. Zheng Q-Z et al (2006) The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J Membr Sci 286(1–2):7–11

    Article  CAS  Google Scholar 

  46. He M et al (2016) Antifouling high-flux membranes via surface segregation and phase separation controlled by the synergy of hydrophobic and hydrogen bond interactions. J Membr Sci 520:814–822

    Article  CAS  Google Scholar 

  47. Singh S et al (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142(1):111–127

    Article  CAS  Google Scholar 

  48. Pérez P et al (2013) Corrosion behaviour of Mg–Zn–Y–Mischmetal alloys in phosphate buffer saline solution. Corros Sci 69:226–235

    Article  Google Scholar 

  49. Salimi E et al (2018) Anti-thrombogenicity and permeability of polyethersulfone hollow fiber membrane with sulfonated alginate toward blood purification. Int J Biol Macromol 116:364–377

    Article  CAS  PubMed  Google Scholar 

  50. Zhu L et al (2015) Poly (lactic acid) hemodialysis membranes with poly (lactic acid)-block-poly (2-hydroxyethyl methacrylate) copolymer as additive: preparation, characterization, and performance. ACS Appl Mater Interfaces 7(32):17748–17755

    Article  CAS  PubMed  Google Scholar 

  51. Shahrabi SS, Barzin J, Shokrollahi P (2018) Blood cell separation by novel PET/PVP blend electrospun membranes. Polym Testing 66:94–104

    Article  CAS  Google Scholar 

  52. Haidekker M et al (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33(6):415–425

    Article  CAS  PubMed  Google Scholar 

  53. Van Oss CJ (2006) Interfacial forces in aqueous media. CRC press

  54. Wolfson A, Dlugy C, Shotland Y (2007) Glycerol as a green solvent for high product yields and selectivities. Environ Chem Lett 5(2):67–71

    Article  CAS  Google Scholar 

  55. Gonçalves F et al (2010) PVT, viscosity, and surface tension of ethanol: New measurements and literature data evaluation. J Chem Thermodyn 42(8):1039–1049

    Article  Google Scholar 

  56. Mallevialle J, Odendaal PE, Wiesner MR (1996) Water treatment membrane processes. American Water Works Association

  57. Guillen GR et al (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50(7):3798–3817

    Article  CAS  Google Scholar 

  58. Mohsenpour S et al (2016) The role of thermodynamic parameter on membrane morphology based on phase diagram. J Mol Liq 224:776–785

    Article  CAS  Google Scholar 

  59. Yang Y et al (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Membr Sci 288(1–2):231–238

    Article  CAS  Google Scholar 

  60. Safarpour M et al (2019) Two-stage phase separation of cellulose acetate membranes modified with plasma-treated natural zeolite: Response surface modeling. Polym Adv Technol 30(4):889–901

    Article  CAS  Google Scholar 

  61. Ma Y et al (2011) Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination 272(1–3):51–58

    Article  CAS  Google Scholar 

  62. Zheng Q-Z, Wang P, Yang Y-N (2006) Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process. J Membr Sci 279(1–2):230–237

    Article  CAS  Google Scholar 

  63. Lee K-W et al (2003) Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes. Desalination 159(3):289–296

    Article  CAS  Google Scholar 

  64. Barzin J, Madaeni SS, Mirzadeh H (2005) Effect of preparation conditions on morphology and performance of hemodialysis membranes prepared from polyether sulphone and polyvinylpyrrolidone

  65. Albrecht W et al (2001) Formation of hollow fiber membranes from poly (ether imide) at wet phase inversion using binary mixtures of solvents for the preparation of the dope. J Membr Sci 192(1–2):217–230

    Article  CAS  Google Scholar 

  66. Hasheminasab S, Barzin J, Dehghan R (2020) High-Performance Hemodialysis Membrane: Influence of Polyethylene Glycol and Polyvinylpyrrolidone in the Polyethersulfone Membrane. J Membr Sci Res 6(4):438–448

    CAS  Google Scholar 

  67. Irfan M et al (2019) Hemodialysis performance and anticoagulant activities of PVP-k25 and carboxylic-multiwall nanotube composite blended Polyethersulfone membrane. Mater Sci Eng, C 103:109769

    Article  CAS  Google Scholar 

  68. Basri H, Ismail A, Aziz M (2009) Effect of PVP addition in the preparation of polyethersulfone (PES)–AgNO3 antibacterial membrane. J Appl Membr Sci Technol 10(1)

  69. Yang Q et al (2008) Pioneering explorations of rooting causes for morphology and performance differences in hollow fiber kidney dialysis membranes spun from linear and hyperbranched polyethersulfone. J Membr Sci 313(1–2):190–198

    Article  CAS  Google Scholar 

  70. Yang Q, Chung T-S, Weber M (2009) Microscopic behavior of polyvinylpyrrolidone hydrophilizing agents on phase inversion polyethersulfone hollow fiber membranes for hemofiltration. J Membr Sci 326(2):322–331

    Article  CAS  Google Scholar 

  71. Dehghan R, Barzin J (2020) Development of a polysulfone membrane with explicit characteristics for separation of low density lipoprotein from blood plasma. Polym Testing 106438

  72. Dehghan R, Barzin J (2020) Low density lipoprotein (LDL) apheresis from blood plasma via anti-biofouling tuned membrane incorporated with graphene oxide-modified carrageenan. J Membr Sci 118878

  73. Zhang G et al (2016) Ultralow oil-fouling heterogeneous poly (ether sulfone) ultrafiltration membrane via blending with novel amphiphilic fluorinated gradient copolymers. Langmuir 32(5):1380–1388

    Article  CAS  PubMed  Google Scholar 

  74. Zhao H et al (2013) Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys Chem Chem Phys 15(23):9084–9092

    Article  CAS  PubMed  Google Scholar 

  75. Qin Y (2016) Biocompatibility testing for medical textile products. Medical Textile Materials. In: Qin Y (ed) Woodhead Publishing, Waltham, MA, USA, p 191–201

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Barzin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 7050 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, R., Barzin, J. High cut-off membrane: evaluation of pore collapse and the synergistic effect of low and high molecular weight polyvinylpyrrolidone. J Polym Res 28, 76 (2021). https://doi.org/10.1007/s10965-021-02429-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02429-w

Keywords

Navigation