Skip to main content

Advertisement

Log in

A low cost and eco-friendly membrane from polyvinyl alcohol, chitosan and honey: synthesis, characterization and antibacterial property

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A cheap and eco-friendly polyvinyl alcohol (PVA)/chitosan (CS)/honey membrane was successfully developed using solvent casting technique. The prepared membranes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), contact angle, optical microscopy (OM) and universal testing machine (UTM) analysis. XRD results indicate that the membrane is crystalline, while FT-IR data confirm the successful incorporation of honey into the PVA/chitosan membrane. SEM analysis revealed that the surface morphology of the PVA/CS membrane is intact even after the incorporation of honey, which is corroborated by AFM and optical microscopic analysis. Contact angle measurement suggests that the hydrophilicity of the membrane increases with honey concentration. The membrane possesses good thermal and mechanical stability as indicated by TGA and UTM analysis. Disc diffusion method was employed to investigate the antibacterial activity of the membrane and the result shows that the membrane possesses good antibacterial activity against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria). The antibacterial activity of the membrane could be tuned by honey concentration and 15 wt% honey loaded membrane displayed highest zone of inhibition (diameter: 8 mm (E. coli) and 14 mm (S. aureus). Our studies thus suggest that the PVA/chitosan/honey membrane could be a potential candidate for wound dressing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12

Similar content being viewed by others

Reference

  1. Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, Sun J (2016) Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B 143:415–422. https://doi.org/10.1016/j.colsurfb.2016.03.052

    Article  CAS  Google Scholar 

  2. Gao Z-H, Deng C-J, Xie Y-Y, Guo X-L, Wang Q-Q, Liu L-Z, Lee W-H, Li S-A, Zhang Y (2018) Pore-forming toxin-like protein complex expressed by frog promotes tissue repair. FASEB J 33:782–795. https://doi.org/10.1096/fj.201800087R

    Article  PubMed  Google Scholar 

  3. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7549. https://doi.org/10.1039/c7ra13510f

    Article  CAS  Google Scholar 

  4. Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Sci 346:941–945. https://doi.org/10.1126/science.1253836

    Article  CAS  Google Scholar 

  5. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, Yue K, Swieszkowski W, Memic A, Tamayol A, Khademhosseini A (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166. https://doi.org/10.1016/j.addr.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathew S, Mathew J, Radhakrishnan EK (2019) Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. J Polym Res 26. https://doi.org/10.1007/s10965-019-1888-0

  7. Wei QB, Fu F, Zhang YQ, Tang L (2014) Preparation, characterization, and antibacterial properties of pH-responsive P(MMA-co-MAA)/silver nanocomposite hydrogels. J Polym Res 21. https://doi.org/10.1007/s10965-013-0349-4

  8. Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res, 21. https://doi.org/10.1007/s10965-014-0355-1

  9. Ahn HR, Tak TM, Kwon Y-N (2013) Preparation and applications of poly vinyl alcohol (PVA) modified cellulose acetate (CA) membranes for forward osmosis (FO) processes. Desalination Water Treat 53:1–7. https://doi.org/10.1080/19443994.2013.834516

    Article  CAS  Google Scholar 

  10. Abdallah OM, El-Baghdady KZ, Khalil MMH, El Borhamy MI, Meligi GA (2020) Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites. J Polym Res 27. https://doi.org/10.1007/s10965-020-02050-3

  11. Ben Halima N (2016) Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832. https://doi.org/10.1039/c6ra05742j

    Article  CAS  Google Scholar 

  12. Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132. https://doi.org/10.1002/pen.24855

    Article  CAS  Google Scholar 

  13. Nootsuwan N, Wattanathana W, Jongrungruangchok S, Veranitisagul C, Koonsaeng N, Laobuthee A (2018) Development of novel hybrid materials from polylactic acid and nano-silver coated carbon black with distinct antimicrobial and electrical properties. J Polym Res 25. https://doi.org/10.1007/s10965-018-1484-8

  14. Moulay S (2015) Review: Poly(vinyl alcohol) Functionalizations and Applications. Polym Plastics Technol Eng 54:1289–1319. https://doi.org/10.1080/03602559.2015.1021487

    Article  CAS  Google Scholar 

  15. Muppalaneni S (2013) Polyvinyl Alcohol in Medicine and Pharmacy: a Perspective. J Dev Drugs 02. https://doi.org/10.4172/2329-6631.1000112

  16. Farrugia BL, Cowin AJ, West ZE, Murray RZ  (2019) Development and use of biomaterials as wound healing therapies. Burns Trauma 7. https://doi.org/10.1186/s41038-018-0139-7

  17. He F, Jiao H, Tian Y, Zhao L, Liao X, Fan Z, Liu B (2017) Facile and large-scale synthesis of curcumin/PVA hydrogel: effectively kill bacteria and accelerate cutaneous wound healing in the rat. J Biomater Sci Polym Ed 29:325–343. https://doi.org/10.1080/09205063.2017.1417002

    Article  CAS  PubMed  Google Scholar 

  18. Afshari MJ, Sheikh N, Afarideh H (2015) PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Rad Phys Chem 113:28–35. https://doi.org/10.1016/j.radphyschem.2015.04.023

    Article  CAS  Google Scholar 

  19. Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Bio Macromol 114:1203–1215. https://doi.org/10.1016/j.ijbiomac.2018.04.010

    Article  CAS  Google Scholar 

  20. Tang Y, Lan X, Liang C, Zhong Z, Xie R, Zhou Y, Miao X, Wang H, Wang W (2019) Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr Polym 219:113–120. https://doi.org/10.1016/j.carbpol.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  21. Ravi Kumar M, N. V. (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/s1381-5148(00)00038-9

    Article  Google Scholar 

  22. Wu WC, Hsiao PY, Huang YC (2019) Effects of amylose content on starch-chitosan composite film and its application as a wound dressing. J Polym Res 26. https://doi.org/10.1007/s10965-019-1770-0

  23. Mohanasrinivasan V, Mishra M, Paliwal JS, Singh SK, Selvarajan E. Suganthi V, Subathra Devi C (2013) Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech, 4: 167–175. https://doi.org/10.1007/s13205-013-0140-6

  24. Vijayalakshmi K, Devi BM, Sudha PN (2016) Synthesis, Characterization and Applications of Nanochitosan/Sodium Alginate/Microcrystalline Cellulose Film. J Nanomed Nanotechnol 07. https://doi.org/10.4172/2157-7439.1000419

  25. Chirkov SN (2002) Appl Biochem Microbiol 38:1–8. https://doi.org/10.1023/a:1013206517442

    Article  CAS  Google Scholar 

  26. Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties. Int J Biomater 2012:1–9. https://doi.org/10.1155/2012/632698

    Article  CAS  Google Scholar 

  27. Rawal T, Mishra N, Jha A, Bhatt A, Tyagi RK, Panchal S, Butani S (2018) Chitosan Nanoparticles of Gamma-Oryzanol: Formulation, Optimization, and In vivo Evaluation of Anti-hyperlipidemic Activity. AAPS Pharm Sci Tech 19:1894–1907. https://doi.org/10.1208/s12249-018-1001-8

    Article  CAS  Google Scholar 

  28. Sugano M, Fujikawa T, Hiratsuji Y, Nakashima K, Fukuda N, Hasegawa Y (1980) A novel use of chitosan as a hypocholesterolemic agent in rats. Am J Clin Nutr 33:787–793. https://doi.org/10.1093/ajcn/33.4.787

    Article  CAS  PubMed  Google Scholar 

  29. Radwan-Pragłowska J, Piątkowski M, Deineka V, Janus Ł, Korniienko V, Husak E, Holubnycha V, Liubchak I, Zhurba V, Sierakowska A, Pogorielov M, Bogdał D (2019) Chitosan-Based Bioactive Hemostatic Agents with Antibacterial Properties—Synthesis and Characterization. Mol 24. https://doi.org/10.3390/molecules24142629

  30. Cheung R, Ng T, Wong J, Chan W (2015) Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Marine Drugs 13:5156–5186. https://doi.org/10.3390/md13085156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential - a critical literature survey. Microb Biotech 2:186–201. https://doi.org/10.1111/j.1751-7915.2008.00080.x

    Article  CAS  Google Scholar 

  32. Wang T, Zhu X-K, Xue X-T, Wu D-Y (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83. https://doi.org/10.1016/j.carbpol.2011.11.069

    Article  CAS  Google Scholar 

  33. Khan FR, Abadin ZU, Rauf N (2007) Honey: nutritional and medicinal value. Int J Clin Pract 61:1705–1707. https://doi.org/10.1111/j.1742-1241.2007.01417.x

    Article  CAS  PubMed  Google Scholar 

  34. Chang J, Cuellar NG (2009) The Use of Honey for Wound Care Management. Home Healthcare Nurse: J Home Care Hospice Prof 27:308–316. https://doi.org/10.1097/01.NHH.0000356783.00998.fa

    Article  Google Scholar 

  35. Pieper B (2009) Honey-Based Dressings and Wound Care. J Wound Ostomy Continence Nurs 36:60–66. https://doi.org/10.1097/01.WON.0000345177.58740.7d

    Article  PubMed  Google Scholar 

  36. Sramek M, Woerz B, Horn H, Weiss J, Kohlus R (2016) Preparation of High-Grade Powders from Honey-Glucose Syrup Formulations by Vacuum Foam-Drying Method. J Food Process Preserv 40:790–797. https://doi.org/10.1111/jfpp.12660

    Article  CAS  Google Scholar 

  37. Almasaudi SB, Al-Nahari AAM, Abd El-Ghany ESM, Barbour E, Al Muhayawi SM, Al-Jaouni S, Azhar E, Qari M, Qari YA, Harakeh S (2017) Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J Bio Sci 24:1255–1261. https://doi.org/10.1016/j.sjbs.2016.08.007

    Article  CAS  Google Scholar 

  38. Medhi B, Sinha S, Prakash A, Sehgal R (2018) Comparative effect of manuka honey on anaerobic parasitic protozoans with standard drug therapy under in vitro conditions: A preliminary study. In J Pharmacol 50. https://doi.org/10.4103/ijp.IJP_227_18

  39. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM (2010) Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr Res 30:650–659. https://doi.org/10.1016/j.nutres.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  40. Turkmen N, Sari F, Poyrazoglu ES, Velioglu YS (2006) Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem 95:653–657. https://doi.org/10.1016/j.foodchem.2005.02.004

    Article  CAS  Google Scholar 

  41. Kundu S, Biswas TK, Das P, Kumar S, De DK (2016) Turmeric (Curcuma longa) rhizome paste and honey show similar wound healing potential: a preclinical study in rabbits. Int J Lower Extrem Wounds 4:205–213. https://doi.org/10.1177/1534734605281674

    Article  Google Scholar 

  42. Subrahmanyam M (1998) A prospective randomised clinical and histological study of superficial burn wound healing with honey and silver sulfadiazine. Burns 24:157–161. https://doi.org/10.1016/s0305-4179(97)00113-7

    Article  CAS  PubMed  Google Scholar 

  43. Minden-Birkenmaier B, Bowlin G (2018) Honey-Based Templates in Wound Healing and Tissue Engineering. Bioengineering 5. https://doi.org/10.3390/bioengineering5020046

  44. An J, Zhang M, Zhan Z (2007) Effect of packaging film on the quality of ‘Chaoyang’ honey peach fruit in modified atmosphere packages. Packaging Technol Sci 20:71–76. https://doi.org/10.1002/pts.746

    Article  CAS  Google Scholar 

  45. Mandal MD, Mandal S (2011) Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1:154–160. https://doi.org/10.1016/s2221-1691(11)60016-6

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thawley AR (2015) The Components of Honey and Their Effects on its Properties: A Review. Bee World 50: 51–60. https://doi.org/10.1080/0005772x.1969.11097248

  47. El-Sukhon SN, Abu-Harfeil N, Sallal AK (1994) Effect of Honey on Bacterial Growth and Spore Germination. J Food Prot 57:918–920. https://doi.org/10.4315/0362-028x-57.10.918

    Article  CAS  PubMed  Google Scholar 

  48. Gleiter R, Horn H, Isengard H (2006) Influence of type and state of crystallisation on the water activity of honey. Food Chem 96:441–445. https://doi.org/10.1016/j.foodchem.2005.03.051

    Article  CAS  Google Scholar 

  49. White JW, Subers MH, Schepartz AI (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochimica et Biophysica Acta (BBA) - Spec Sect Enzymol Subj 73: 57–70 . https://doi.org/10.1016/0926-6569(63)90108-1

  50. Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M (2009) Contribution of honey in nutrition and human health: a review. Med J  Nutr Metab 3:15–23. https://doi.org/10.1007/s12349-009-0051-6

    Article  Google Scholar 

  51. Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for Nutrition and Health: A Review. J Am Coll Nutr 27:677–689. https://doi.org/10.1080/07315724.2008.10719745

    Article  CAS  PubMed  Google Scholar 

  52. Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun Non-Woven Nanofibrous Hybrid Mats Based on Chitosan and PLA for Wound-Dressing Applications. Macromol Biosci 9:102–111. https://doi.org/10.1002/mabi.200800189

    Article  CAS  PubMed  Google Scholar 

  53. Jull AB, Cullum N, Dumville JC, Westby MJ, Deshpande S, Walker N (2015) Honey as a topical treatment for wounds. Cochrane Database Sys Rev. https://doi.org/10.1002/14651858.CD005083.pub4

  54. Iftikhar F, Arshad M, Rasheed F, Amraiz D, Anwar P, Gulfraz M (2010) Effects of acacia honey on wound healing in various rat models. Phytother Res 24:583–586. https://doi.org/10.1002/ptr.2990

    Article  CAS  PubMed  Google Scholar 

  55. Tavakoli J, Tang Y (2017) Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Mater Sci Eng C 77:318–325. https://doi.org/10.1016/j.msec.2017.03.272

    Article  CAS  Google Scholar 

  56. Maleki H, Gharehaghaji AA, Dijkstra PJ (2013) A novel honey-based nanofibrous scaffold for wound dressing application. J Appl Polym Sci 127:4086–4092. https://doi.org/10.1002/app.37601

    Article  CAS  Google Scholar 

  57. Noori S, Kokabi M, Hassan ZM (2018) Poly(vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. J Appl Polym Sci 135. https://doi.org/10.1002/app.46311

  58. Sarhan WA, Azzazy HME (2015) High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr Polym 122:135–143. https://doi.org/10.1016/j.carbpol.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  59. El-Kased RF, Amer RI, Attia D, Elmazar MM (2017) Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing. Scientific Reports 7. https://doi.org/10.1038/s41598-017-08771-8

  60. Goy RC, Britto Dd, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19: 241–247. https://doi.org/10.1590/s0104-14282009000300013

  61. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S (2020) Adsorption of methylene blue dye from aqueous solution by a novel PVA/CMC/halloysite nanoclay bio composite: Characterization, kinetics, isotherm and antibacterial properties. J Environ Health Sci Eng. https://doi.org/10.1007/s40201-020-00549-x

  62. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S (2020) Adsorption Study of Anionic Dye, Eriochrome Black T from Aqueous Medium Using Polyvinyl Alcohol/Starch/ZSM-5 Zeolite Membrane. J Polym Environ 28:2631–2643. https://doi.org/10.1007/s10924-020-01812-w

    Article  CAS  Google Scholar 

  63. Sabarish R, Unnikrishnan G (2018) Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym 199:129–140. https://doi.org/10.1016/j.carbpol.2018.06.123

    Article  CAS  PubMed  Google Scholar 

  64. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S (2020) Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Scientific Reports 10. https://doi.org/10.1038/s41598-020-72398-5

  65. Nakane K, Yamashita T, Iwakura K, Suzuki F (1999)Properties and structure of poly(vinyl alcohol)/silica composites. J Appl Polym Sci 74: 133–138. https://doi.org/10.1002/(sici)1097-4628(19991003)74:1<133::Aid-app16>3.0.Co;2-n

  66. Samuels RJ (1981) Solid state characterization of the structure of chitosan films. J Polym Sci Polym Phys Ed 19:1081–1105. https://doi.org/10.1002/pol.1981.180190706

    Article  CAS  Google Scholar 

  67. Jia Y-T, Gong J, Gu X-H, Kim H-Y, Dong J, Shen X-Y (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr Polym 67:403–409. https://doi.org/10.1016/j.carbpol.2006.06.010

    Article  CAS  Google Scholar 

  68. Sabarish R, Unnikrishnan G (2018) PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: Fabrication, characterization, adsorption, kinetics and antimicrobial properties. J Environ Chem Eng 6:3860–3873. https://doi.org/10.1016/j.jece.2018.05.026

    Article  CAS  Google Scholar 

  69. Sarhan WA, Azzazy HME, El-Sherbiny IM (2016) The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers. Mater Sci Eng C 67:276–284. https://doi.org/10.1016/j.msec.2016.05.006

    Article  CAS  Google Scholar 

  70. Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5:83436–83447. https://doi.org/10.1039/c5ra16068e

    Article  CAS  Google Scholar 

  71. Cui Z, Zheng Z, Lin L, Si J, Wang Q, Peng X, Chen W (2018) Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv Polym Technol 37:1917–1928. https://doi.org/10.1002/adv.21850

    Article  CAS  Google Scholar 

  72. Dhasmana A, Singh L, Roy P, Chandra Mishra N (2018) Honey incorporated antibacterial acellular dermal matrix for full-thickness wound healing. Annals Biotechnol 1. https://doi.org/10.33582/2637-4927/1011

  73. Mancuso E, Tonda-Turo C, Ceresa C, Pensabene V, Connell SD, Fracchia L, Gentile P (2019) Potential of Manuka Honey as a Natural Polyelectrolyte to Develop Biomimetic Nanostructured Meshes With Antimicrobial Properties. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00344

  74. El-Hefian EA, Nasef MM, Yahaya AH (2010) The Preparation and Characterization of Chitosan / Poly (Vinyl Alcohol) Blended Films. E J Chem 7:1212–1219. https://doi.org/10.1155/2010/626235

    Article  CAS  Google Scholar 

  75. Dhivya S, Padma VV, Santhini E (2015) Wound dressings – a review. Bio Med 5. https://doi.org/10.7603/s40681-015-0022-9

  76. Neres Santos A, Duarte Moreira A, Piler Carvalho C, Luchese R, Ribeiro E, McGuinness G, Fernandes Mendes M, Nunes Oliveira R (2019) Physically Cross-Linked Gels of PVA with Natural Polymers as Matrices for Manuka Honey Release in Wound-Care Applications. Mater 12. https://doi.org/10.3390/ma12040559

  77. Abraham A, Soloman PA, Rejini VO (2016) Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technol 24:741–748. https://doi.org/10.1016/j.protcy.2016.05.206

    Article  Google Scholar 

  78. Yang H, Xu S, Jiang L, Dan Y (2011) Thermal Decomposition Behavior of Poly (Vinyl Alcohol) with Different Hydroxyl Content. J Macromol Sci Part B 51:464–480. https://doi.org/10.1080/00222348.2011.597687

    Article  CAS  Google Scholar 

  79. Sargazi G, Afzali D, Mostafavi A, Shadman A, Rezaee B, Zarrintaj P, Saeb MR, Ramakrishna S, Mozafari M (2019) Chitosan/polyvinyl alcohol nanofibrous membranes: towards green super-adsorbents for toxic gases. Heliyon 5. https://doi.org/10.1016/j.heliyon.2019.e01527

  80. Felsner ML, Cano CB, Matos JR, Almeida-Muradian LBd, Bruns RE (2004) Optimization of thermogravimetric analysis of ash content in honey. J Br Chem Soc 15: 797–802. https://doi.org/10.1590/s0103-50532004000600002

  81. Kravanja G, Primožič M, Knez Ž, Leitgeb M (2019) Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Mol 24. https://doi.org/10.3390/molecules24101960

  82. Khan MIH, Islam JMM, Kabir W, Rahman A, Mizan M, Rahman MF, Amin J, Khan MA (2016) Development of hydrocolloid Bi-layer dressing with bio-adhesive and non-adhesive properties. Mater Sci Eng C 69:609–615. https://doi.org/10.1016/j.msec.2016.07.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Centre of Innovation in Design and Engineering for Manufacturing (CoI- DEM), KMUTNB, Thailand for providing the necessary research facilities for this work. The work was financed by the King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand and grant funded the Post-Doctoral KMUTNB-63-Post-03, KMUTNB-64-03 to SR) and (Grant No. KMUTNB-BasicR-64-16)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabarish Radoor, Suchart Siengchin or Jyotishkumar Parameswaranpillai.

Ethics declarations

Conflicts of interests

The authors don’t have any conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radoor, S., Karayil, J., Jayakumar, A. et al. A low cost and eco-friendly membrane from polyvinyl alcohol, chitosan and honey: synthesis, characterization and antibacterial property. J Polym Res 28, 82 (2021). https://doi.org/10.1007/s10965-021-02415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02415-2

Keywords

Navigation